Skip to main content
Log in

High sensitivity capacitive flexible pressure sensor based on PDMS double wrinkled microstructure

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Capacitive pressure sensors are an important part of wearable human health applications. The fabrication of highly sensitive flexible pressure sensors in a low cost and efficient way remains a tough issue. Herein, a rapid-response and highly sensitive capacitive pressure sensor is developed based on compressible wrinkled microstructures through a low-cost and scalable solution approach. The sensor is constructed of double layers of well-defined polydimethylsiloxane (PDMS) structures with silver-nanowires (Ag NWs) electrodes. This capacitive pressure sensor allows the sensitive detection of both static and dynamic external stimuli. When the double layer PDMS wrinkled direction is perpendicular to each other, the prepared sensor possesses a high sensitivity of 3.19 kpa−1, a low detectable pressure limit (1.0 Pa), a fast response time (< 100 ms), and a wide pressure range. The sensor also possesses high robustness: it can be tested for at least 1800 cycles without performance deterioration. We further demonstrate this highly sensitive pressure sensor in a wearable application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

All data included in this study are available upon request by contact with the corresponding author.

References

  1. Z. Duan, Y. Jiang, Q. Huang, Z. Yuan, Q. Zhao, S. Wang, Y. Zhang, H. Tai, A do-it-yourself approach to achieving a flexible pressure sensor using daily use materials. J. Mater. Chem. C 9, 13659–13667 (2021)

    CAS  Google Scholar 

  2. Y. Zhang, J. Yang, X. Hou, G. Li, L. Wang, N. Bai, M. Cai, L. Zhao, Y. Wang, J. Zhang, K. Chen, X. Wu, C. Yang, Y. Dai, Z. Zhang, C.F. Guo, Highly stable flexible pressure sensors with a quasi-homogeneous composition and interlinked interfaces. Nat. Commun. 13, 1317 (2022)

    CAS  Google Scholar 

  3. Y. Hou, L. Wang, R. Sun, Y. Zhang, M. Gu, Y. Zhu, Y. Tong, X. Liu, Z. Wang, J. Xia, Y. Hu, L. Wei, C. Yang, M. Chen, Crack-across-pore enabled high-performance flexible pressure sensors for deep neural network enhanced sensing and human action recognition. ACS Nano 16, 8358–8369 (2022)

    CAS  Google Scholar 

  4. D. Lei, Q. Zhang, N. Liu, T. Su, L. Wang, Z. Ren, Y. Gao, An ion channel-induced self-powered flexible pressure sensor based on potentiometric transduction mechanism. Adv. Funct. Mater. 32, 2108856 (2022)

    CAS  Google Scholar 

  5. Q. Du, L. Liu, R. Tang, J. Ai, Z. Wang, Q. Fu, C. Li, Y. Chen, X. Feng, High-performance flexible pressure sensor based on controllable hierarchical microstructures by laser scribing for wearable electronics. Adv. Mater. Technol. 6, 2100122 (2021)

    CAS  Google Scholar 

  6. X. Wang, J. Yu, Y. Cui, W. Li, Research progress of flexible wearable pressure sensors. Sens. Actuat. A: Phys. 330, 112838 (2021)

    CAS  Google Scholar 

  7. W. Chen, X. Yan, Progress in achieving high-performance piezoresistive and capacitive flexible pressure sensors: a review. J. Mater. Sci. Technol. 43, 175–188 (2020)

    CAS  Google Scholar 

  8. W. Li, X. Jin, X. Han, Y. Li, W. Wang, T. Lin, Z. Zhu, Synergy of porous structure and microstructure in piezoresistive material for high-performance and flexible pressure sensors. ACS Appl. Mater. Interfaces 13, 19211–19220 (2021)

    CAS  Google Scholar 

  9. C. Zhi, S. Shi, Y. Si, B. Fei, H. Huang, J. Hu, Recent progress of wearable piezoelectric pressure sensors based on nanofibers, yarns, and their fabrics via electrospinning. Adv. Mater. Technol. 8, 2201161 (2023)

    CAS  Google Scholar 

  10. H. Wang, Z. Li, Z. Liu, J. Fu, T. Shan, X. Yang, Q. Lei, Y. Yang, D. Li, Flexible capacitive pressure sensors for wearable electronics. J. Mater. Chem. C 10, 1594–1605 (2022)

    CAS  Google Scholar 

  11. A. Kumar, Recent progress in the fabrication and applications of flexible capacitive and resistive pressure sensors. Sens. Actuat. A: Phys. 344, 113770 (2022)

    Google Scholar 

  12. J. Hwang, Y. Kim, H. Yang, J.H. Oh, Fabrication of hierarchically porous structured PDMS composites and their application as a flexible capacitive pressure sensor. Comp. Part B: Eng. 211, 108607 (2021)

    CAS  Google Scholar 

  13. J. Pignanelli, K. Schlingman, T.B. Carmichael, S. Rondeau-Gagne, M.J. Ahamed, A comparative analysis of capacitive-based flexible PDMS pressure sensors. Sens. Actuat. A: Phys. 285, 427–436 (2019)

    CAS  Google Scholar 

  14. L. Ma, X. Shuai, Y. Hu, X. Liang, P. Zhu, R. Sun, C.P. Wong, A highly sensitive and flexible capacitive pressure sensor based on a micro-arrayed polydimethylsiloxane dielectric layer. J. Mater. Chem. C 6, 13232–13240 (2018)

    CAS  Google Scholar 

  15. E. Thouti, K. Chauhan, R. Prajesh, M. Farman, R.K. Maurya, P. Sharma, A. Nagaraju, Flexible capacitive pressure sensors using microdome like structured polydimethylsiloxane dielectric layers. Sens. Actuat. A: Phys. 335, 113393 (2022)

    CAS  Google Scholar 

  16. X. Yang, Y. Wang, H. Sun, X. Qing, A flexible ionic liquid-polyurethane sponge capacitive pressure sensor. Sens. Actuat. A: Phys. 285, 67–72 (2019)

    CAS  Google Scholar 

  17. S. Liu, R. Duan, S. He, H. Liu, M. Huang, X. Liu, W. Liu, C. Zhu, Research progress on dielectric properties of PU and its application on capacitive sensors and OTFTs. React. Funct. Polym. 181, 105420 (2022)

    CAS  Google Scholar 

  18. R.B. Mishra, N. El-Atab, A.M. Hussain, M.M. Hussain, Recent progress on flexible capacitive pressure sensors: From design and materials to applications. Adv. Mater. Technol. 6, 2001023 (2021)

    Google Scholar 

  19. Y. Zhu, Y. Wu, G. Wang, Z. Wang, Q. Tan, L. Zhao, D. Wu, A flexible capacitive pressure sensor based on an electrospun polyimide nanofiber membrane. Org. Electron. 84, 105759 (2020)

    CAS  Google Scholar 

  20. X. Yang, Y. Wang, X. Qing, A flexible capacitive sensor based on the electrospun PVDF nanofiber membrane with carbon nanotubes. Sens. Actuat. A: Phys. 299, 111579 (2019)

    CAS  Google Scholar 

  21. S. Hajra, A.M. Padhan, M. Sahu, P. Alagarsamy, K. Lee, H.J. Kim, Lead-free flexible Bismuth Titanate-PDMS composites: a multifunctional colossal dielectric material for hybrid piezo-triboelectric nanogenerator to sustainably power portable electronics. Nano Energy 89, 106316 (2021)

    CAS  Google Scholar 

  22. H. Shivashankar, A.M. Kevin, S.B.S. Manohar, S.M. Kulkarni, Investigation on dielectric properties of PDMS based nanocomposites. Phys. B: Cond. Matter 602, 412357 (2021)

    CAS  Google Scholar 

  23. C. Mahata, H. Algadi, J. Lee, S. Kim, T. Lee, Biomimetic-inspired micro-nano hierarchical structures for capacitive pressure sensor applications. Measurement 151, 107095 (2019)

    Google Scholar 

  24. Y. Jung, W. Lee, K. Jung, B. Park, J. Park, J. Ko, H. Cho, A highly sensitive and flexible capacitive pressure sensor based on a porous three-dimensional PDMS/Microsphere composite. Polymers 12, 1412 (2020)

    CAS  Google Scholar 

  25. E. Thouti, A. Nagaraju, A. Chandran, P.V.B.S.S. Prakash, P. Shivanarayanamurthy, B. Lal, P. Kumar, P. Kothari, D. Panwar, Tunable flexible capacitive pressure sensors using arrangement of polydimethylsiloxane micro-pyramids for bio-signal monitoring. Sens. Actuat. A: Phys. 314, 112251 (2020)

    CAS  Google Scholar 

  26. V. Jain, T.P. Raj, R. Deshmukh, R. Patrikar, Design, fabrication and characterization of low cost printed circuit board based EWOD device for digital microfluidics applications. Microsyst. Technol. 23, 389–397 (2017)

    CAS  Google Scholar 

  27. M.F. Lin, C. Cheng, C.C. Yang, W.T. Hsiao, C.R. Yang, A wearable and highly sensitive capacitive pressure sensor integrated a dual-layer dielectric layer of PDMS microcylinder array and PVDF electrospun fiber. Org. Electron. 98, 106290 (2021)

    CAS  Google Scholar 

  28. J. Pignanelli, K. Schlingman, T.B. Carmichael, S. Rondeau-Gagné, M.J. Ahamed, A comparative analysis of capacitive-based flexible PDMS pressure sensors. Sens. Actuat. A: Phys. 285, 427–436 (2018)

    Google Scholar 

  29. M. Xu, Y. Gao, G. Yu, C. Lu, J. Tan, F. Xuan, Flexible pressure sensor using carbon nanotube-wrapped polydimethylsiloxane microspheres for tactile sensing. Sens. Actuat. A: Phys. 284, 260–265 (2018)

    CAS  Google Scholar 

  30. J.H. Hwang, J.S. Hong, C.W. Oh, M.J. Joe, H.C. Jeong, H.G. Park, Soft imprint lithography for liquid crystal alignment using a wrinkled UVO-treated PDMS transferring method. J. Molecul. Liquids 323, 115150 (2021)

    CAS  Google Scholar 

  31. K. Efimenko, M. Rackaitis, E. Manias, A. Vaziri, L. Mahadevan, J. Genzer, Nested self-similar wrinkling patterns in skins. Nat. Mater. 4, 293–297 (2005)

    CAS  Google Scholar 

  32. J. Deng, L. Jiang, B. Si, H. Zhou, J. Dong, P. Cohen, AFM-Based nanofabrication and quality inspection of three-dimensional nanotemplates for soft lithography. J. Manufact. Proc. 66, 565–573 (2021)

    Google Scholar 

  33. D. Qi, K. Zhang, G. Tian, B. Jiang, Y. Huang, Stretchable electronics based on PDMS substrates. Adv. Mater. 33, 2003155 (2021)

    CAS  Google Scholar 

  34. Y. Zhou, L. Zhao, Z. Song, C. Chang, L. Yang, S. Yu, Foldable and highly flexible transparent conductive electrode based on PDMS/Ag NWs/PEDOT: PSS. Opt. Mater. 126, 112175 (2022)

    CAS  Google Scholar 

  35. S. Yu, B. Tang, C. Wu, L. Li, Ultraflexible transparent conductive films based on Ag nanowires for use in quick thermal response transparent heater. Opt. Mater. 125, 112083 (2022)

    CAS  Google Scholar 

  36. S. Yu, X. Liu, P. Yang, L. Zhao, H. Dong, C. Wu, X. Li, J. Xiong, Highly stable silver nanowire networks with tin oxide shells for freestanding transparent conductive nanomembranes through all-solution processes. Chem. Eng. J. 446, 137481 (2022)

    CAS  Google Scholar 

  37. A.J. Jaworski, G.T. Bolton, The design of an electrical capacitance tomography sensor for use with media of high dielectric permittivity. Measurement Sci. Technol. 11, 743 (2000)

    CAS  Google Scholar 

  38. Y. Zhu, X. Chen, K. Chu, X. Wang, Z. Hu, H. Su, Carbon black/PDMS based flexible capacitive tactile sensor for multi-directional force sensing. Sensors 22, 628 (2022)

    CAS  Google Scholar 

  39. K. Fouad, K. Salah, A. Beddiaf, Performance optimization of a capacitive pressure sensor. Key Eng. Mater. 644, 101–105 (2015)

    Google Scholar 

  40. Z. Hong, W. Dongyang, F. Yong, C. Hao, Y. Yusen, Y. Jiaojiao, J. Liguo, Dielectric properties of polyimide/SiO2 hollow spheres composite films with ultralow dielectric constant. Mater. Sci. Eng. B 203, 13–18 (2016)

    CAS  Google Scholar 

  41. B. Fan, Y. Liu, D. He, J. Bai, Achieving polydimethylsiloxane/carbon nanotube (PDMS/CNT) composites with extremely low dielectric loss and adjustable dielectric constant by sandwich structure. Appl. Phys. Lett. 112, 052902 (2018)

    Google Scholar 

  42. M. Pruvost, W.J. Smit, C. Monteux, P. Poulin, A. Colin, Polymeric foams for flexible and highly sensitive low-pressure capacitive sensors. NPJ Flex. Electron. 3, 7 (2019)

    Google Scholar 

  43. L. Zhao, S. Yu, J. Li, Z. Song, M. Wu, X. Wang, X. Wang, Biomimetic-inspired highly sensitive flexible capacitive pressure sensor with high-aspect-ratio microstructures. Curr. Appl. Phys. 31, 29–37 (2021)

    Google Scholar 

  44. Y. Wan, Z. Qiu, Y. Hong, Y. Wang, J. Zhang, Q. Liu, Z. Wu, C.F. Guo, A highly sensitive flexible capacitive tactile sensor with sparse and high-aspect-ratio microstructures. Adv. Electr. Mater. 4, 1700586 (2018)

    Google Scholar 

  45. S. Levine, J. Gauger, L. Bowers, K. Khan, A comparison of Mouthstick and Morse code text inputs. Augment. Alternat. Commun. 2, 51–55 (1986)

    Google Scholar 

  46. L. Zhao, P. Yang, S. Shi, X. Wang, S. Yu, Highly adaptable strain capacitive sensors with exceptional selectivity using spontaneous micrometer-pyramid electrodes. ACS Appl. Electr. Mater. 5, 977–984 (2023)

    CAS  Google Scholar 

  47. L. Zhao, S. Yu, J. Li, Z. Song, X. Wang, Highly reliable sensitive capacitive tactile sensor with spontaneous micron-pyramid structures for electronic skins. Macromolecul. Mater. Eng 307, 2200192 (2022)

    CAS  Google Scholar 

Download references

Funding

This work is supported by the National Natural Science Foundation of China (Grant No. 52175525), Science and Technology Project of Henan Province (Grant Nos. 222102230032, 232102211079) and Teaching reform project of Henan Province (Grant No. 2022JYZD-001).

Author information

Authors and Affiliations

Authors

Contributions

SW, YS, XQ, LL: conceptualization, methodology, formal analysis; validation, writing—original draft. LZ: conceptualization, methodology, formal analysis. PY: methodology, formal analysis; validation. SY: visualization; writing—review& editing, project administration.

Corresponding authors

Correspondence to Pan Yang or Shihui Yu.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, S., Chang, S., Song, Y. et al. High sensitivity capacitive flexible pressure sensor based on PDMS double wrinkled microstructure. J Mater Sci: Mater Electron 35, 78 (2024). https://doi.org/10.1007/s10854-023-11770-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-11770-3

Navigation