Skip to main content
Log in

Engineering of antisolvent dripping for large-area perovskite solar cell fabrication under air ambient conditions

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Fabricating perovskite films using the antisolvent dripping method has gained significant attention recently due to its simplicity and scalability. Unfortunately, this approach often leads to uneven distribution of antisolvent across the entire surface of a large substrate, mainly for substrates area larger than 6.5 cm2. In this study, we compare the effect of using a single-channel pipette versus a multichannel (MC) pipette during the antisolvent dripping process for depositing large-area perovskite films (25 cm2). Our results demonstrate that implementing an MC pipette improves the uniformity and the crystallinity of the large-area perovskite film. The devices formed by the film made from the MC strategy showed more uniform efficiency distribution and higher thermal stability. Impressively, MC-based devices depicted an average power conversion efficiency (PCE) of 16.15% (Best 18.19%). Whereas SC-based devices show an average PCE of 14.3% (Best 17.16%). This work provides valuable insights into optimizing large-area perovskite film fabrication techniques for solar cell applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The datasets produced and/or analyzed in the course of the present study can be obtained upon reasonable request from the corresponding author at the following address: https://iitd.irins.org/profile/388393

References

  1. J. Park, J. Kim, H.-S. Yun, M.J. Paik, E. Noh, H.J. Mun, M.G. Kim, T.J. Shin, S.I. Seok, Controlled growth of perovskite layers with volatile alkylammonium chlorides. Nature. 616(7958), 724–730 (2023)

    Article  CAS  Google Scholar 

  2. A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131(17), 6050–6051 (2009)

    Article  CAS  Google Scholar 

  3. J.Y. Kim, J.-W. Lee, H.S. Jung, H. Shin, N.-G. Park, High-efficiency perovskite solar cells. Chem. Rev. 120(15), 7867–7918 (2020)

    Article  CAS  Google Scholar 

  4. N.K. Bansal, S. Mishra, H. Dixit, S. Porwal, P. Singh, T. Singh, Machine learning in perovskite solar cells: recent developments and future perspectives. Energy Technol. 11(12), 2300735 (2023). https://doi.org/10.1002/ente.202300735

    Article  Google Scholar 

  5. M.A. Green, A. Ho-Baillie, H.J. Snaith, The emergence of perovskite solar cells. Nat. Photonics. 8(7), 506–514 (2014)

    Article  CAS  Google Scholar 

  6. N.K. Bansal, S. Porwal, H. Dixit, D. Kumar, T. Singh, A theoretical study to investigate the impact of bilayer interfacial modification in perovskite solar cell. Energy Technol. 11(4), 2201395 (2023)

    Article  CAS  Google Scholar 

  7. F. Giustino, H.J. Snaith, Toward lead-free perovskite solar cells. ACS Energy Lett. 1(6), 1233–1240 (2016)

    Article  CAS  Google Scholar 

  8. D. Kumar, S. Porwal, T. Singh, Role of defects in organic–inorganic metal halide perovskite: detection and remediation for solar cell applications. Emergent Mater. 5(4), 987–1020 (2022)

    Article  CAS  Google Scholar 

  9. Z. Saki, M.M. Byranvand, N. Taghavinia, M. Kedia, M. Saliba, Solution-processed perovskite thin-films: the journey from lab- to large-scale solar cells. Energy Environ. Sci. 14(11), 5690–5722 (2021)

    Article  CAS  Google Scholar 

  10. N.-G. Park, K. Zhu, Scalable fabrication and coating methods for perovskite solar cells and solar modules. Nat. Rev. Mater. 5(5), 333–350 (2020)

    Article  CAS  Google Scholar 

  11. Z. Li, T.R. Klein, D.H. Kim, M. Yang, J.J. Berry, M.F.A.M. van Hest, K. Zhu, Scalable fabrication of perovskite solar cells. Nat. Rev. Mater. 3(4), 18017 (2018)

    Article  CAS  Google Scholar 

  12. I.-G. Bae, B. Park, All-self-metered solution-coating process in ambient air for the fabrication of efficient, large-area, and semitransparent perovskite solar cells. Sustain. Energy Fuels 4(6), 3115–3128 (2020)

    Article  CAS  Google Scholar 

  13. J. Burschka, N. Pellet, S.-J. Moon, R. Humphry-Baker, P. Gao, M.K. Nazeeruddin, M. Grätzel, Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature. 499(7458), 316–319 (2013)

    Article  CAS  Google Scholar 

  14. Z. Xiao, C. Bi, Y. Shao, Q. Dong, Q. Wang, Y. Yuan, C. Wang, Y. Gao, J. Huang, Efficient, high yield perovskite photovoltaic devices grown by interdiffusion of solution-processed precursor stacking layers. Energy Environ. Sci. 7(8), 2619–2623 (2014)

    Article  CAS  Google Scholar 

  15. S. Ghosh, S. Mishra, T. Singh, Antisolvents in perovskite solar cells: importance, issues, and alternatives. Adv. Mater. Interfaces 7(18), 2000950 (2020)

    Article  CAS  Google Scholar 

  16. S. Paek, P. Schouwink, E.N. Athanasopoulou, K.T. Cho, G. Grancini, Y. Lee, Y. Zhang, F. Stellacci, M.K. Nazeeruddin, P. Gao, From nano- to micrometer scale: the role of antisolvent treatment on high performance perovskite solar cells. Chem. Mater. 29(8), 3490–3498 (2017)

    Article  CAS  Google Scholar 

  17. A.D. Taylor, Q. Sun, K.P. Goetz, Q. An, T. Schramm, Y. Hofstetter, M. Litterst, F. Paulus, Y. Vaynzof, A general approach to high-efficiency perovskite solar cells by any antisolvent. Nat. Commun. 12(1), 1878 (2021)

    Article  CAS  Google Scholar 

  18. Y. Chen, L. Zhang, Y. Zhang, H. Gao, H. Yan, Large-area perovskite solar cells–a review of recent progress and issues. RSC Adv. 8(19), 10489–10508 (2018)

    Article  CAS  Google Scholar 

  19. J. Kim, J.S. Yun, Y. Cho, D.S. Lee, B. Wilkinson, A.M. Soufiani, X. Deng, J. Zheng, A. Shi, S. Lim, S. Chen, Z. Hameiri, M. Zhang, C.F.J. Lau, S. Huang, M.A. Green, Overcoming the challenges of large-area high-efficiency perovskite solar cells. ACS Energy Lett. 2(9), 1978–1984 (2017)

    Article  CAS  Google Scholar 

  20. Y. Cheng, Y. Peng, A.K.Y. Jen, H.-L. Yip, Development and challenges of metal halide perovskite solar modules. Solar RRL 6(3), 2100545 (2022)

    Article  CAS  Google Scholar 

  21. S. Mandati, R.K. Battula, G. Veerappan, E. Ramasamy, A promising scalable bar coating approach using a single crystal-derived precursor ink for high-performance large-area perovskite solar cells. Mater. Today Chem. 29, 101415 (2023)

    Article  CAS  Google Scholar 

  22. S. Mandati, R. Veerappan, E. Ramasamy, Large area bar coated TiO2 electron transport layers for perovskite solar cells with excellent performance homogeneity. Solar Energy 240, 528–268 (2022)

    Article  Google Scholar 

  23. T. Bu, X. Liu, J. Li, W. Huang, Z. Wu, F. Huang, Y.-B. Cheng, J. Zhong, Dynamic antisolvent engineering for spin coating of 10 × 10 cm2 perovskite solar module approaching 18%. Solar RRL 4(2), 1900263 (2020)

    Article  CAS  Google Scholar 

  24. T. Singh, T. Miyasaka, Stabilizing the efficiency beyond 20% with a mixed cation perovskite solar cell fabricated in ambient air under controlled humidity. Adv. Energy Mater. 8(3), 1700677 (2018)

    Article  Google Scholar 

  25. S. Ghosh, B. Boro, S. Porwal, S. Mishra, T. Singh, Role of antisolvent temperature and quaternary ammonium cation-based ionic liquid engineering in the performance of perovskite solar cells processed under air ambient conditions. Energy Adv. 2(8), 1155–1165 (2023)

    Article  CAS  Google Scholar 

  26. C. Xu, Z. Liu, E.-C. Lee, Crystallization management for high-performance perovskite solar cells by introducing an antisolvent into the perovskite precursor. J. Mater. Chem. C 8(44), 15860–15867 (2020)

    Article  CAS  Google Scholar 

  27. R. Singh, S. Sandhu, J.-J. Lee, Elucidating the effect of shunt losses on the performance of mesoporous perovskite solar cells. Sol. Energy. 193, 956–961 (2019)

    Article  CAS  Google Scholar 

  28. Y. Li, B. Ding, Q.Q. Chu, G.J. Yang, M. Wang, C.X. Li, C.J. Li, Ultra-high open-circuit voltage of perovskite solar cells induced by nucleation thermodynamics on rough substrates. Sci. Rep. (2017). https://doi.org/10.1038/srep46141

    Article  Google Scholar 

  29. M.A. Green, Solar cell fill factors: general graph and empirical expressions. Solid State Electron. 24(8), 788–789 (1981)

    Article  CAS  Google Scholar 

  30. D. Grabowski, Z. Liu, G. Schöpe, U. Rau, T. Kirchartz, Fill factor losses and deviations from the superposition principle in lead halide perovskite solar cells. Solar RRL 6(11), 2200507 (2022)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

N.K.B. and S.P. acknowledge the Prime Minister’s Research Fellowship (PMRF) for financial assistance. S.G. thanks the IIT Kharagpur for the research facilities. T.S. acknowledges IIT Delhi and IIT Kharagpur for the infrastructure and research facilities. The authors extend their gratitude to Ankita Karmakar and Prof. Maruthi Manoj Brundavanam for their contributions to PL measurements.

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

NKB: conceptualization, designed the idea, data analysis, investigation, writing—original draft; SG: formal analysis, investigation, writing—review; SP: visualization, data analysis, review & editing; TS: Conceptualization, Data curation, Formal analysis, Funding acquisition, Methodology, Supervision, Validation, Writing—review & editing.

Corresponding author

Correspondence to Trilok Singh.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bansal, N.K., Ghosh, S., Porwal, S. et al. Engineering of antisolvent dripping for large-area perovskite solar cell fabrication under air ambient conditions. J Mater Sci: Mater Electron 35, 1 (2024). https://doi.org/10.1007/s10854-023-11764-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-11764-1

Navigation