Skip to main content
Log in

Effects of MgO contents in CaO–Al2O3–B2O3–SiO2 (CABS) glass and different glass/ceramic mass ratios on densification and dielectric properties of CABS glass/Al2O3 composites

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

This article aims to investigate the effects of MgO contents in CaO–Al2O3–B2O3–SiO2 (CABS) glass and different glass/ceramic mass ratios on sintering shrinkage behavior, phase composition, microstructure, and microwave dielectric properties of CABS glass/Al2O3 composites. The results show that an appropriate content of MgO can promote the sintering densification of the composite material and improve the dielectric properties of the composite material. When the content of MgO is 3 wt% (in the CABS glass), the CABS glass/45 wt% Al2O3 sample sintered at 850 °C for 30 min exhibits the best comprehensive properties with the density of 2.6 g/cm3, dielectric constant (εr) of 5.99, dielectric loss (tan δ) of 1.93 × 10–3 (10 GHz) and coefficient of thermal expansion of 6.76 ppm/°C. It was a chemically compatible with silver, which shows great potential in the application of LTCC material in packaging substrates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

All relevant data are within the paper.

References

  1. F. Steinhäußer, A. Talai, R. Weigel, A. Koelpin, A. Bittner, U. Schmid, Permittivity reduction and surface modification by porosification of LTCC. Ceram. Int. 42(7), 8925–8931 (2016). https://doi.org/10.1016/j.ceramint.2016.02.149

    Article  CAS  Google Scholar 

  2. R. Tandon, C.S. Newton, S.L. Monroe, S.J. Glass, C.J. Roth, Sub-critical crack growth behavior of a low-temperature co-fired ceramic. J. Am. Ceram. Soc. 90(5), 1527–1533 (2007). https://doi.org/10.1111/j.1551-2916.2007.01626.x

    Article  CAS  Google Scholar 

  3. J. Xi, F. Shang, F. Liu, J. Xu, G. Chen, A facile preparation of temperature-stable borate ultra-low permittivity microwave ceramics for LTCC applications. Ceram. Int. 46(11), 19650–19653 (2020). https://doi.org/10.1016/j.ceramint.2020.04.301

    Article  CAS  Google Scholar 

  4. C. Yang, J. Li, Y. Lu, Y. Shan, Q. Xian, H. Zhou, Sintering behaviors, microstructures and dielectric properties of CaO–B2O3–SiO2 glass ceramic for LTCC application with various network modifiers content. J. Mater. Sci. 32(22), 26655–26665 (2021). https://doi.org/10.1007/s10854-021-07042-7

    Article  CAS  Google Scholar 

  5. Z. Qing, B. Li, H. Li, Y. Li, S. Zhang, Influence of Al2O3/SiO2 ratio on the microstructure and properties of low temperature co-fired CaO–Al2O3–SiO2 based ceramics. J. Mater. Sci. 25(10), 4206–4211 (2014). https://doi.org/10.1007/s10854-014-2150-5

    Article  CAS  Google Scholar 

  6. M.T. Sebastian, R. Ubic, H. Jantunen, Low-loss dielectric ceramic materials and their properties. Int. Mater. Rev. 60(7), 392–412 (2015). https://doi.org/10.1179/1743280415Y.0000000007

    Article  CAS  Google Scholar 

  7. X. Lu, W. Bian, C. Min, Z. Fu, Q. Zhang, H. Zhu, Cation distribution of high-performance Mn-substituted ZnGa2O4 microwave dielectric ceramics. Ceram. Int. 44(9), 10028–10034 (2018). https://doi.org/10.1016/j.ceramint.2018.02.041

    Article  CAS  Google Scholar 

  8. X. Chen, F. Wang, Y. Guan, X. Zhu, J. Shi, H. Mao, W. Li, W. Zhang, Phase evolution and dielectric properties of La2O3–B2O3–ZnO glass-ceramics/Al2O3 composites for LTCC substrates at high frequencies. J. Mater. Sci. 33(15), 12436–12446 (2022). https://doi.org/10.1007/s10854-022-08201-0

    Article  CAS  Google Scholar 

  9. Z. Zhang, H. Su, X. Tang, H. Zhang, T. Zhou, Y. Jing, Glass-free low-temperature sintering and microwave dielectric properties of CaWO4–Li2WO4 ceramics. Ceram. Int. 40(1), 1613–1617 (2014). https://doi.org/10.1016/j.ceramint.2013.07.050

    Article  CAS  Google Scholar 

  10. Z.X. Li, H.J. Mao, Y.W. Zhang, W.J. Zhang, Influences of glass content on the microstructure and properties of BaO–CaO–Al2O3–SiO2 glass/alumina composite for LTCC applications. IOP Conference Series: Mater. Sci. Eng. (2018). https://doi.org/10.1088/1757-899x/292/1/012082

    Article  Google Scholar 

  11. Y.-C. Fang, J.-H. Jean, Effects of alumina on densification of a low-temperature cofired crystalllizable glass+alumina system. Jpn. J. Appl. Phys. 46(6A), 3475–3480 (2007). https://doi.org/10.1143/jjap.46.3475

    Article  CAS  Google Scholar 

  12. C. Junzhu, L. Ziang, Y. Liqing, A. Yue, L. Anjian, L. Sheng, K. Junfeng, H. Yansheng, Y. Yunlong, Effects of BaO on crystallization, structure and dielectric properties of MgO–Al­2O3–SiO2 glass–ceramics for LTCC applications. J. Mater. Sci. 32(5), 5803–5809 (2021). https://doi.org/10.1007/s10854-021-05301-1

    Article  CAS  Google Scholar 

  13. F. Yang, Y. Yuan, J. Li, C. Zhang, J. Tong, F. Meng, Sintering behavior and properties of CABS/MgAl2O4 composite for LTCC applications. J. Mater. Sci. 31(20), 17375–17380 (2020). https://doi.org/10.1007/s10854-020-04293-8

    Article  CAS  Google Scholar 

  14. H. Shao, H. Zhou, H. Zhu, X. Shen, Preparation and properties of crystallizable glass/Al2O3 composites for LTCC material. J. Wuhan Univ. Technol. Mater. Sci. Ed. 26(6), 1174–1178 (2011). https://doi.org/10.1007/s11595-011-0385-z

    Article  CAS  Google Scholar 

  15. M.T. Sebastian, H. Jantunen, Low loss dielectric materials for LTCC applications: a review. Int. Mater. Rev. 53(2), 57–90 (2008). https://doi.org/10.1179/174328008x277524

    Article  CAS  Google Scholar 

  16. D. Zeng, J. Xu, Y. Chen, W. Chen, Y. Yu, H. Wang, R. Zeng, Novel lead-free glass/ceramics system with low permittivity low loss for LTCC application. Int. J. Appl. Ceram. Technol. 12(E112), E116 (2015). https://doi.org/10.1111/ijac.12289

    Article  CAS  Google Scholar 

  17. L. Ren, M. Zhang, H. Zhou, Application of composite binders in the fabrication of LTCC green tape based on the borosilicate glass/Al2O3 system with optimized Ca/Mg ratios. Ceram. Int. 46(16), 25979–25986 (2020). https://doi.org/10.1016/j.ceramint.2020.07.087

    Article  CAS  Google Scholar 

  18. X. Luo, Y. Ma, B. Shao, C. Li, K. Li, D. Guo, D. Chen, Eco-friendly tape casting of borosilicate glass/Al2O3 sheets for LTCC applications. Ceram. Int. 48(18), 25975–25983 (2022). https://doi.org/10.1016/j.ceramint.2022.05.277

    Article  CAS  Google Scholar 

  19. X. Zhu, H. Mao, F. Wang, R. Liang, X. Chen, Z. Liu, W. Li, W. Zhang, Preparation of a CaO–Al2O3–B2O3–SiO2 glass/Al2O3 LTCC substrate material with high flexural strength for microwave application. J. Mater. Sci. (2023). https://doi.org/10.1007/s10854-023-10541-4

    Article  Google Scholar 

  20. X. Luo, L. Ren, Y. Xia, Y. Hu, W. Gong, M. Cai, H. Zhou, Microstructure, sinterability and properties of CaO–B2O3–SiO2 glass/Al2O3 composites for LTCC application. Ceram. Int. 43(9), 6791–6795 (2017). https://doi.org/10.1016/j.ceramint.2017.02.096

    Article  CAS  Google Scholar 

  21. X. Luo, H. Tao, P. Li, Y. Fu, H. Zhou, Properties of borosilicate glass/Al2O3 composites with different Al2O3 concentrations for LTCC applications. J. Mater. Sci. 31(17), 14069–14077 (2020). https://doi.org/10.1007/s10854-020-03961-z

    Article  CAS  Google Scholar 

  22. L. Ren, H. Zhou, X. Li, W. Xie, X. Luo, Synthesis and characteristics of borosilicate-based glass–ceramics with different SiO2 and Na2O contents. J. Alloys Compds. 646, 780–786 (2015). https://doi.org/10.1016/j.jallcom.2015.06.155

    Article  CAS  Google Scholar 

  23. M. Ma, Z. Liu, F. Zhang, F. Liu, Y. Li, R. Bordia, Suppression of silver diffusion in borosilicate glass-based low-temperature cofired ceramics by copper oxide addition. J. Am. Ceram. Soc. 99(7), 2402–2407 (2016). https://doi.org/10.1111/jace.14248

    Article  CAS  Google Scholar 

  24. M. Liu, H. Zhou, H. Zhu, Z. Yue, J. Zhao, Microstructure and dielectric properties of glass/Al2O3 composites with various low softening point borosilicate glasses. J. Mater. Sci. 23(12), 2130–2139 (2012). https://doi.org/10.1007/s10854-012-0719-4

    Article  CAS  Google Scholar 

  25. M. Liu, X. Xu, H. Zhou, Z. Yue, Z. An, Sintering characteristics, microstructures and dielectric properties of borosilicate-based glass/alpha-Al2O3 composites for LTCC application with different MgO and Na2O contents. J. Mater. Sci. 31(14), 11195–11203 (2020). https://doi.org/10.1007/s10854-020-03667-2

    Article  CAS  Google Scholar 

  26. X. Chen, F. Wang, W. Zhang, Low temperature sintering and dielectric properties of La2O3–B2O3–Al2O3 glass–ceramic/Al2O3 composites for LTCC applications. J. Mater. Sci. 30(3), 3098–3106 (2019). https://doi.org/10.1007/s10854-018-00589-y

    Article  CAS  Google Scholar 

  27. Y. Lin, M.M. Smedskjaer, J.C. Mauro, Structure, properties, and fabrication of calcium aluminate-based glasses. Int. J. Appl. Glass Sci. 10(4), 488–501 (2019). https://doi.org/10.1111/ijag.13417

    Article  CAS  Google Scholar 

  28. J. Partyka, M. Lesniak, Raman and infrared spectroscopy study on structure and microstructure of glass-ceramic materials from SiO2–Al2O3–Na2O–K2O–CaO system modified by variable molar ratio of SiO2/Al2O3. Spectrochim. Acta. A Mol. Biomol. Spectrosc. 152, 82–91 (2016). https://doi.org/10.1016/j.saa.2015.07.045

    Article  CAS  Google Scholar 

  29. Z. Sun, W. Li, Y. Liu, H. Zhang, D. Zhu, H. Sun, C. Hu, S. Chen, Design and preparation of a novel degradable low-temperature co-fired ceramic (LTCC) composites. Ceram. Int. 45(6), 7001–7010 (2019). https://doi.org/10.1016/j.ceramint.2018.12.201

    Article  CAS  Google Scholar 

  30. R.M. German, P. Suri, S.J. Park, Review: liquid phase sintering. J. Mater. Sci. 44(1), 1–39 (2009). https://doi.org/10.1007/s10853-008-3008-0

    Article  CAS  Google Scholar 

  31. L. Li, X. Ding, Q. Liao, Reaction-sintering method for ultra-low loss (Mg0.95Co0.05)TiO3 ceramics. J. Alloys Compds. 509(26), 7271–7276 (2011). https://doi.org/10.1016/j.jallcom.2011.04.062

    Article  CAS  Google Scholar 

  32. G. Dal Poggetto, M. Catauro, G. Crescente, C. Leonelli, Efficient addition of waste glass in MK-based geopolymers: microstructure, antibacterial and cytotoxicity investigation. Polymers (2021). https://doi.org/10.3390/polym13091493

    Article  Google Scholar 

  33. M. Sitarz, W. Mozgawa, M. Handke, Vibrational spectra of complex ring silicate anions—method of recognition. J. Mol. Struct. 404(1), 193–197 (1997). https://doi.org/10.1016/S0022-2860(96)09381-7

    Article  CAS  Google Scholar 

  34. S. Agathopoulos, D.U. Tulyaganov, J.M.G. Ventura, S. Kannan, A. Saranti, M.A. Karakassides, J.M.F. Ferreira, Structural analysis and devitrification of glasses based on the CaO–MgO–SiO2 system with B2O3, Na2O, CaF2 and P2O5 additives. J. Non-cryst. Solids 352(4), 322–328 (2006). https://doi.org/10.1016/j.jnoncrysol.2005.12.003

    Article  CAS  Google Scholar 

  35. W. Gong, Z. Luo, Y. Shen, Sintering behavior, microstructure and dielectric performance of Al2O3 ceramic with addition of new Bi2O3–B2O3–SiO2–ZnO glass. J. Mater. Res. 38(8), 2169–2178 (2023). https://doi.org/10.1557/s43578-023-00948-4

    Article  CAS  Google Scholar 

  36. E.I. Kamitsos, A.P. Patsis, M.A. Karakassides, G.D. Chryssikos, Infrared reflectance spectra of lithium borate glasses. J. Non-cryst. Solids 126, 52–67 (1990)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors thank Research Project of Shanxi Scholarship Council of China (No. 2022-042), Key R & D program of Shanxi Province (No. 202102030201006), Natural Science Foundation of Shanxi Province (No. 202203021221059).

Author information

Authors and Affiliations

Authors

Contributions

XW was responsible for major experiments and tests, data curation, and writing and preparing the original draft. ZW and ZH participated in experiment process control. TS contributed to data curation and test platform management. YM and FG were involved in writing-review and editing.

Corresponding author

Correspondence to Yang Miao.

Ethics declarations

Conflict of interest

There are no financial interests/personal relationships which may be considered as potential competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Wei, Z., Huang, Z. et al. Effects of MgO contents in CaO–Al2O3–B2O3–SiO2 (CABS) glass and different glass/ceramic mass ratios on densification and dielectric properties of CABS glass/Al2O3 composites. J Mater Sci: Mater Electron 34, 2299 (2023). https://doi.org/10.1007/s10854-023-11760-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-11760-5

Navigation