Skip to main content
Log in

Preparation and characterizations of reduced graphene oxide reinforced silicon composites

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Silicon has been potentially considered a promising anode material for lithium-ion batteries (LIBs) due to its high specific capacity to meet the demands of portable energy storage and electric vehicle applications. Reduced graphene oxide (RGO) reinforcement in silicon (Si) emerges as a super additive in the view of improving the behavior of Si for making suitable new generation anodes for batteries. RGO was varied in the range of 0.1 to 0.5 wt% in the Si matrix. Si/RGO composites were prepared by high energy dry planetary ball milling route. Micro Raman analysis shows the peaks of Si with different Raman shift peaks for carbon (C) such as D, G, and 2D. The purity of the composite was confirmed from energy dispersive spectra (EDS) analysis showing only peaks of Si and C. X-ray photoelectron spectroscopy (XPS), high-resolution transmission electron microscope (HRTEM) and selected area electron diffraction (SAED) results further confirm the successful formation of Si/RGO composites. In the case of the Si/RGO (0.5 wt%) composite, peaks due to Si–C, Si, and C–C were observed by XPS spectra. Interestingly it was observed that RGO reinforcement enhanced the specific surface area and electrical conductivity of the Si matrix. 0.5 wt% reinforced RGO enhanced the specific surface area of Si from 97 to 192 m2 g−1. Si/RGO (0.5 wt%) composite exhibited nearly 8 times more electrical conductivity of 32.06 × 104 Sm−1 in comparison to that of pure Si of 4 × 104 Sm−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig.5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

All data generated or analysed during this study are included in this published article.

References

  1. W.G.J.H.M. Van Sark, G.W. Brandsen, M. Fleuster, M.P. Hekkert, Energy Policy (2007). https://doi.org/10.1016/j.enpol.2006.12.017

    Article  Google Scholar 

  2. Z. Xu, J. Yang, H. Li, Y. Nuli, J. Wang, J. Mater. Chem. A (2019). https://doi.org/10.1039/c9ta01876j

    Article  Google Scholar 

  3. N. Li, S. Jin, Q. Liao, H. Cui, C.X. Wang, Nano Energy (2014). https://doi.org/10.1016/j.nanoen.2014.02.011

    Article  Google Scholar 

  4. N. Liu, H. Wu, M.T. McDowell, Y. Yao, C. Wang, Yi. Cui, Nano Lett. (2012). https://doi.org/10.1021/nl3014814

    Article  Google Scholar 

  5. M. Otero, C. Heim, E. P. M.Leiva, N. Wagner, A. Friedrich, Sci. Rep. (2018) https://www.nature.com/articles/s41598-018-33405-y

  6. D. Qiu, G. Bu, B. Zhao, Z. Lin, J. Solid State Electrochem. (2015). https://doi.org/10.1007/s10008-014-2693-7

    Article  Google Scholar 

  7. H.C. Tao, X.L. Yang, L.L. Zhang, S.B. Ni, Mater. Chem. Phys. (2014). https://doi.org/10.1016/j.matchemphys.2014.05.026

    Article  Google Scholar 

  8. M. Tokur, M.Y. Jin, B.W. Sheldon, H. Akbulut, ACS Appl. Mater. Interfaces (2020). https://doi.org/10.1021/acsami.0c10064

    Article  Google Scholar 

  9. B. Kim, J. Ahn, Y. Oh, J. Tan, D. Lee, J.K. Lee, J. Moon, J. Mater. Chem. A (2018). https://doi.org/10.1039/C7TA10093K

    Article  Google Scholar 

  10. Z. Liu, D. Guan, Q. Yu, L. Xu, Z. Zhuang, T. Zhu, D. Zhao, L. Zhou, L. Mai, Energy Storage Mater. (2018). https://doi.org/10.1016/j.ensm.2018.01.004

    Article  Google Scholar 

  11. H. Duan, H. Xu, Q. Wu, L. Zhu, Y. Zhang, B. Yin, H. He, Molecules (2023). https://doi.org/10.3390/molecules28020464

    Article  Google Scholar 

  12. V. Chakrapani, F. Rusli, M.A. Filler, P.A. Kohl, J. Power. Sources (2012). https://doi.org/10.1016/j.jpowsour.2012.01.061

    Article  Google Scholar 

  13. A. Gohier, B. Laïk, K.H. Kim, J.L. Maurice, J.P. Pereira-Ramos, C.S. Cojocaru, P.T. Van, Adv. Mater. (2012). https://doi.org/10.1002/adma.201104923

    Article  Google Scholar 

  14. X. Yang, Z. Xie, X. Lu, M. Wei, X. Tan, H. Ling, Y. Li, Environ. Sci. Pollut. Res. Int. (2023). https://doi.org/10.1007/s11356-023-26309-6

    Article  Google Scholar 

  15. M. Tokur, H. Algul, S. Ozcan, T. Cetinkaya, M. Uysal, H. Akbulut, Electrochim. Acta (2016). https://doi.org/10.1016/j.electacta.2016.09.048

    Article  Google Scholar 

  16. Z. Hu, Z. Zhengquan, J. Mao, Fuller. Nanotub. Carbon Nanostruct. (2019). https://doi.org/10.1080/1536383X.2019.1655402

    Article  Google Scholar 

  17. Y. Mussa, F. Ahmed, M. Arsalan, E. Alsharaeh, Sci. Rep. (2020). https://doi.org/10.1038/s41598-020-58439-z

    Article  Google Scholar 

  18. Q. Xu, J.K. Sun, J.Y. Li, Y.X. Yin, Y.G. Guo, Energy Storage Mater. (2018). https://doi.org/10.1016/j.ensm.2017.11.015

    Article  Google Scholar 

  19. M.S. Wang, Z.Q. Wang, R. Jia, Y. Yang, F.Y. Zhu, Z.L. Yang, Y. Huang, X. Li, W. Xu, Appl. Surf. Sci. (2018). https://doi.org/10.1016/j.apsusc.2018.06.147

    Article  Google Scholar 

  20. X. Wang, Q. Weng, X. Liu, X. Wang, D.M. Tang, W. Tian, C. Zhang, W. Yi, D. Liu, Y. Bando, D. Golberg, Nano Lett. (2014). https://doi.org/10.1021/nl4038592

    Article  Google Scholar 

  21. P. Dash, T. Dash, T.K. Rout, A.K. Sahu, S.K. Biswal, B.K. Mishra, RSC Adv. (2016). https://doi.org/10.1039/C5RA26491J

    Article  Google Scholar 

  22. G.R. Kumar, K. Jayasankar, S.K. Das, T. Dash, A. Dash, B.K. Jena, B.K. Mishra, RSC Adv. (2016). https://doi.org/10.1039/C5RA24810H

    Article  Google Scholar 

  23. I.J. Shon, J.K. Yoon, K.T. Hong, Met. Mater. Int. (2018). https://doi.org/10.1007/s12540-017-7135-5

    Article  Google Scholar 

  24. S.K. Sahoo, A.K. Purohit, G.K. Panigrahi, J.K. Sahoo, Phys. Chem. Liq. (2021). https://doi.org/10.1080/00319104.2020.1858418

    Article  Google Scholar 

  25. M. Su, S. Liu, L. Tao, Y. Tang, A. Dou, J. Lv, Y. Liu, J. Electroanal. Chem. (2019). https://doi.org/10.1016/j.jelechem.2019.04.072

    Article  Google Scholar 

  26. T. Dash, T.K. Rout, B.B. Palei, S. Bajpai, S. Kundu, A.N. Bhagat, B.K. Satpathy, S.K. Biswal, A. Rajput, A.K. Sahu, S.K. Biswal, SN Appl. Sci. (2020). https://doi.org/10.1007/s42452-020-2672-9

    Article  Google Scholar 

  27. S. Dash, T. Dash, T.K. Rout, IOP Conf. Ser.: Mater. Sci. Eng. (2020). https://doi.org/10.1088/1757-899X/872/1/012180

    Article  Google Scholar 

  28. B.B. Palei, T. Dash, S.K. Biswal, J. Mater. Sci. (2022). https://doi.org/10.1007/s10853-022-07043-9

    Article  Google Scholar 

  29. J. Luo, X. Zhao, J. Wu, H.D. Jang, H.H. Kung, J. Huang, J. Phys. Chem. Lett. (2012). https://doi.org/10.1021/jz3006892

    Article  Google Scholar 

  30. R. Yi, J. Zai, F. Dai, M.L. Gordin, D. Wang, Nano Energy (2014). https://doi.org/10.1016/j.nanoen.2014.04.006

    Article  Google Scholar 

  31. H. Tang, Y.J. Zhang, Q.Q. Xiong, J.D. Cheng, Q. Zhang, X.L. Wang, C.D. Gu, J.P. Tu, Electrochim. Acta (2015). https://doi.org/10.1016/j.electacta.2015.01.009

    Article  Google Scholar 

  32. Q. Zhang, Y. Yang, D. Wang, R. Zhang, H. Fan, L. Feng, G. Wen, L.C. Qin, J. Alloys Compd. (2023). https://doi.org/10.1016/j.jallcom.2023.169185

    Article  Google Scholar 

  33. T. Dash, B.B. Palei, B. Dash, R.K. Sahu, R.K. Moharana, S. Dhar, S.K. Biswal, Mater. Today: Proc. (2022). https://doi.org/10.1016/j.matpr.2022.04.721

    Article  Google Scholar 

  34. S. Dhar, T. Dash, B.B. Palei, T.K. Rout, S.K. Biswal, A. Mitra, A.K. Sahu, S.K. Biswal, Mater. Today: Proc. (2020). https://doi.org/10.1016/j.matpr.2020.02.858

    Article  Google Scholar 

  35. S. Müllner, T. Michlik, M. Reichel, T. Held, R. Moos, C. Roth, Batteries (2023). https://doi.org/10.3390/batteries9050248

    Article  Google Scholar 

  36. X. Jianga, Z. Wanga, W. Hana, Q. Liua, S. Lua, Y. Wena, J. Houc, F. Huang, S. Penga, D. Hea, G. Cao, Appl. Surf. Sci. (2017). https://doi.org/10.1016/j.apsusc.2017.02.193

    Article  Google Scholar 

  37. J.-G. Ren, C. Wang, Q.H. Wu, X. Liu, Y. Yang, L. He, W. Zhang, Nanoscale (2014). https://doi.org/10.1039/C3NR05093A

    Article  Google Scholar 

  38. R. Cong, J.Y. Choi, J.B. Song, M. Jo, H. Lee, C.S. Lee, Sci. Rep. (2021). https://doi.org/10.1038/s41598-020-79205-1

    Article  Google Scholar 

  39. A. Mery, Y. Chenavier, C. Marcucci, A. Benayad, J.P. Alper, L. Dubois, C. Haon, N.H. Boime, S. Sadki, F. Duclairoir, Materials (2023). https://doi.org/10.3390/ma16062451

    Article  Google Scholar 

  40. G. Liu, X. Liu, X. Ma, X. Tang, X. Zhang, J. Dong, Y. Ma, X. Zang, N. Cao, Q. Shao, Molecules (2023). https://doi.org/10.3390/molecules28114280

    Article  Google Scholar 

  41. W.H. Ma, M.S. Zhang, L. Shun, Z. Yin, Q. Chen, Y.F. Chen, N.B. Ming, Appl. Phys. A (1996). https://doi.org/10.1007/BF01575095

    Article  Google Scholar 

  42. T. Cui, S. Mukherjee, C. Cao, P.M. Sudeep, J. Tam, P.M. Ajayan, C.V. Singh, Y. Sun, T. Filleter, Carbon (2018). https://doi.org/10.1016/j.carbon.2018.04.074

    Article  Google Scholar 

  43. J.Q. Dalagan, E.P. Enriquez, Bull. Mater. Sci. (2014). https://doi.org/10.1007/s12034-014-0661-6

    Article  Google Scholar 

  44. M.M. Lucchese, F. Stavale, E.M. Ferreira, C. Vilani, M.V.O. Moutinho, R.B. Capaz, C.A. Achete, A. Jorio, Carbon 48, 1592 (2010). https://doi.org/10.1016/j.carbon.2009.12.057

    Article  CAS  Google Scholar 

  45. B. Xu, J. Zhang, Y. Gu, Z. Zhang, W.A. Abdulla, N.A. Kumar, X.S. Zhao, Electrochim. Acta (2016). https://doi.org/10.1016/j.electacta.2016.06.116

    Article  Google Scholar 

Download references

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

GKS: Material preparation, data collection and analysis, interpretation of data, drafted the original work, drafted the revised work. TD: Conception and design of the work, material preparation, data collection and analysis, interpretation of data, validation. SKB: Resources, supervision & validation.

Corresponding author

Correspondence to Tapan Dash.

Ethics declarations

Competing interests

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sahoo, G.K., Dash, T. & Biswal, S.K. Preparation and characterizations of reduced graphene oxide reinforced silicon composites. J Mater Sci: Mater Electron 34, 2323 (2023). https://doi.org/10.1007/s10854-023-11752-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-11752-5

Navigation