Skip to main content
Log in

Influence of SDS dispersant on the preparation and microwave absorption properties of ZnFe2O4 materials

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The agglomeration phenomenon of ZnFe2O4(ZFO) nanoparticles limits its application in microwave absorption. Although some work attempts to solve it, they usually only focus on screening the types of dispersants and do not explore the dosage of dispersants. In this work, sodium dodecyl sulfate (SDS) was selected as dispersant to synthesis ZFO particles through co-precipitation technology, and the micromorphology, structure, electromagnetic parameters, and microwave absorption property of material were influenced by the content of SDS and detected by XRD, SEM, TEM, VSM, and VNA. The results show that the prepared samples were all spherical ZFO particles and were relatively pure. The ZFO-15 particles with a uniform particle size of 27 nm are most dispersed and have the best impedance matching performance mainly due to the formation of considerable micelles in the solution to guide the dispersion of precipitates. The minimum reflection loss of ZFO-15 with a thickness of 7.5 mm can reach − 33.44 dB at 12.24 GHz and the effective absorption width is 5.1 GHz (8.6–12.6 GHz and 16.5–17.6 GHz). This is mainly attributed to the well-dispersed particles promoting the better performance of ZFO material in terms of dielectric and magnetic loss characteristics. It has potential reference value in the industrial application field of ferrite absorbing materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The raw/processed data required to reproduce these findings of the present report cannot be shared at this time as the data also form part of an ongoing study.

References

  1. J. Cui, L. Huang, J.W. Ma et al., Carbon-encapsulated core-shell structure ZnFe2O4 sphere composites coupled with excellent microwave absorption and corrosion resistance. RSC 14, 15393 (2022)

    CAS  Google Scholar 

  2. L. Chai, Y.Q. Wang, N.F. Zhou et al., In-situ growth of core-shell ZnFe2O4 @ porous hollow carbon microspheres as an efficient microwave absorber. J. Colloid Interf Sci. 581, 475–484 (2021)

    Article  CAS  Google Scholar 

  3. A. Iqbal, F. Shahzad, K. Hantanasirisakul et al., Anomalous absorption of electromagnetic waves by 2D transition metal carbonitride Ti3CNTx (MXene). Science. 369, 446–450 (2020)

    Article  CAS  Google Scholar 

  4. X.Z. Zhang, Y.C. Zhang, J. He et al., ZnFe2O4 nanospheres decorated residual carbon from coal gasification fine slag as an ultra-thin microwave absorber. Fuel. 331, 125811 (2023)

    Article  CAS  Google Scholar 

  5. H.L. Lv, Z.H. Yang, P.L.Y. Wang et al., A voltage boosting strategy enabling a low-frequency, flexible electromagnetic wave absorption device. Adv. Mater. 30(15), 1706343 (2018)

    Article  Google Scholar 

  6. Z.G. Gao, Xu. Electrostatic self-assembly synthesis of ZnFe2O4 quantum dots (ZnFe2O4 @ C) and electromagnetic microwave absorption. Compos. Part. B-Eng. 179, 107417 (2019)

    Article  CAS  Google Scholar 

  7. Y. Li, X.F. Liu, X.Y. Nie et al., Multifunctional organic-inorganic hybrid aerogel for self-cleaning, heat-insulating, and highly efficient microwave absorbing material. Adv. Funct. Mater. 29(10), 1–9 (2019)

    CAS  Google Scholar 

  8. B. Quan, W. Shi, S.J.H. Ong et al., Defect engineeting in two common types of dielectric materials for electromagnetic absorption applications. Adv. Funct. Mater. 29(28), 1901236–1901245 (2019)

    Article  Google Scholar 

  9. J.N. Hu, C.Y. Liang, J.D. Li et al., Flexible reduced graphene oxide @ Fe3O4/silicone rubber composites for enhanced microwave absorption. Appl. Surf. Sci. 570, 151270 (2021)

    Article  CAS  Google Scholar 

  10. T.E. Balaji, H.T. Das, T. Maiyalagan, Recent trends in bimetallic oxides and their composites as electrode materials for supercapacitor applications. Chemeletrochem. 8, 1723–1746 (2021)

    Article  CAS  Google Scholar 

  11. N. Tiwari, S. Kadam, S. Kulkarni, Synthesis and characterization of ZnCo2O4 electrode for high-performance supercapacitor application. Mater. Lett. 298, 130039 (2021)

    Article  CAS  Google Scholar 

  12. J.S. Xue, H.Z. Zhang, J.H. Zhao et al., Characterization and microwave absorption of spinel MFe2O4(M = mg, Mn, Zn) nanoparticles prepared by a facile oxidation-precipitation process. J. Magn. Magn. Mater. 514, 167168 (2020)

    Article  CAS  Google Scholar 

  13. K.L. Xu, L. Jiao, C.Q. Wang et al., Nonylphenol photodegradation by novel ternary MIL-100(Fe)/ZnFe2O4/PCN composite under visible light irradiation via double charge transfer process. J. Environ. Sci. 111, 93–103 (2022)

    Article  CAS  Google Scholar 

  14. J.X. He, Y. Yang, P. Zhou et al., Preparation and electrochemical performances of ZnMoO4–ZnFe2O4 composite electrode materials. Ionics 28(3), 1285–1294 (2022)

    Article  CAS  Google Scholar 

  15. B. Bhujn, M.T.T. Tan, A.S. Shanmugam, Study of mixed ternary transition metal ferrites as potential electrodes for supercapacitor applications. Results Phys. 7, 345–353 (2017)

    Article  Google Scholar 

  16. M.B. Askari, P. Salarizadeh, M. Seifi et al., ZnFe2O4 nanorods on reduced graphene oxide as advanced supercapacitor electrodes. J. Alloy Compd. 860, 158479 (2021)

    Article  Google Scholar 

  17. L. Vaisman, H.D. Wagner, G. Marom, The role of surfactants in dispersion of carbon nanotubes. J. Colloid Interf Sci. 37, 128–130 (2006)

    Google Scholar 

  18. W.H. Duan, Q. Wang, F. Collins, Dispersion of carbon nanotubes with SDS surfactants: a study from a binding energy perspective. Chem. Sci. 2, 1407 (2011)

    Article  CAS  Google Scholar 

  19. J.H. Chen, Kinetics and Mechanism Studies on Dispersion of CNT in SDS Aqueous Solutions. J. Chin. Chem. Soc. 61, 481–489 (2014)

    Article  CAS  Google Scholar 

  20. X.X. Li, W.J. Wang, Z.G. Hu, Preparation of uniformly dispersed Yag Ultrafine powders by Coprecipitation Method with SDS treatment. Powder Metall. Met. C+. 48, 7–8 (2009)

    Google Scholar 

  21. P. Zhang, I. Lo, D. Connor et al., High efficiency removal of methylene blue using SDS surface-modified ZnFe2O4 nanoparticles. J. Colloid Interf Sci. 508, 39–48 (2017)

    Article  CAS  Google Scholar 

  22. Y.C. Wu, R.X. Guo, H.T. Xia et al., Effects of different dispersants on mechanical and electrical properties of GO/CNFs cement-based composites. Bull. Chin Ceram Soc. 40(3), 732–739 (2021)

    Google Scholar 

  23. C.F. Jia, M.B. Xing, H.F. Zhang et al., Preparation study of water-based MWCNT-Fe3O4 magnetic nanofluids with high stability. Funct. Mater. 11(52), 11023–11030 (2021)

    Google Scholar 

  24. G.L. Chen, J. Liu, R.Q. Liu et al., Simple Preparation of ZnFe2O4 with different precipitants by co-precipitation for microwave absorption material. J. Electron. Mater. 52(10), 6391–6402 (2023)

    Article  CAS  Google Scholar 

  25. X.Y. Wang, B. Wang, S.C. Wei, Effect of sintering temperature on the microstructure, magnetic, and microwave absorption properties of Mtype barium ferrite nanoparticles prepared by sol–gel method. J. Mater. Sci: Mater. Electron. 34, 1045 (2023)

    CAS  Google Scholar 

  26. S. Feng, M.G. Yu, T.P. Xie et al., MoS2/CoFe2O4 heterojunction for boosting photogenerated carrier separation and the dominant role in enhancing peroxymonosulfate activation. Chem. Eng. J. 433, 134467 (2022)

    Article  CAS  Google Scholar 

  27. X.G. Huang, Y.S. Qin, Y.B. Ma et al., Preparation and electromagnetic properties of nanosized ZnFe2O4 with various shapes. Ceram. Int. 45, 18389–18397 (2019)

    Article  CAS  Google Scholar 

  28. Y. Ruiz-Morales, A. Romero-Martinez, Coarse-Grain Molecular Dynamics Simulations to investigate the bulk viscosity and critical micelle concentration of the ionic surfactant sodium dodecyl sulfate (SDS) in aqueous solution. J. Phys. Chem. B 14(122), 3931–3943 (2018)

    Article  Google Scholar 

  29. W.J. Feng, H.L. Liu, P.F. Hui et al., Preparation and properties of SrFe12O19/ZnFe2O4 Core/Shell Nano-Powder Microwave Absorber. Integr. Ferroelectr. 152, 120–126 (2014)

    Article  CAS  Google Scholar 

  30. D. Li, Y. Feng, D.S. Pan et al., Negative imaginary parts of complex permeability and microwave absorption performance of core double-shelled FeCo/Fe2.5Cr0.5Se4 nanocomposites. RSC Adv. 6, 73020 (2016)

    Article  CAS  Google Scholar 

  31. J.T. Zhou, B. Wei, M.Q. Wang et al., Three dimensional flower like ZnFe2O4 Ferrite loaded graphene: Enhancing microwave absorption performance by constructing microcircuits. J. Alloy Compd. 889, 161734 (2021)

    Article  Google Scholar 

  32. J.S. Deng, Q.B. Wang, Y.Y. Zhou et al., Facile design of a ZnO nanorod-Ni core-shell composite with dual peaks to tune its microwave absorption properties. RSC Adv. 7(15), 9294–9302 (2017)

    Article  CAS  Google Scholar 

  33. A. Aharoni, Exchange resonance modes in a ferromagnetic sphere. J. Appl. Phys. 69(11), 7762–7764 (1991)

    Article  Google Scholar 

  34. Y.B. Li, R. Yi, A.G. Yan et al., Facile synthesis and properties of ZnFe2O4 and ZnFe2O4/polypyrrole core-shell nanoparticles. Solid State Sci. 11, 1319–1324 (2009)

    Article  CAS  Google Scholar 

  35. H.S. Liang, L.M. Zhang, Wu. Exploration of Twin-Modified Grain Boundary Engineering in Metallic Copper Predominated Electromagnetic Wave Absorber. Small. 18, 2203620 (2022)

    Article  CAS  Google Scholar 

  36. Q. Zhou, T.T. Shi, B. Xue et al., Multi-scale integrated design and fabrication of ultra-broadband electromagnetic absorption utilizing multi-walled carbon nanotubes-based hierarchical metamaterial. Compos. Sci. Technol. 232, 109877 (2023)

    Article  CAS  Google Scholar 

Download references

Funding

This work is supported by Applied Basic Research Project of Liaoning Province in 2022.

Author information

Authors and Affiliations

Authors

Contributions

DF: design of the work, acquired data and wrote the manuscript; GC and RL: interpreted the results;  DF: agree to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved.

Corresponding author

Correspondence to Guoliang Chen.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, D., Chen, G. & Liu, R. Influence of SDS dispersant on the preparation and microwave absorption properties of ZnFe2O4 materials. J Mater Sci: Mater Electron 34, 2330 (2023). https://doi.org/10.1007/s10854-023-11746-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-11746-3

Navigation