Skip to main content
Log in

Graphene-silver nanowires hybrid electrode on PET sheet for improved-performance transparent electronics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Graphene is an excellent material for transparent conductive electrodes due to its high electrical conductivity, transparency, flexibility, and mechanical strength. On the other hand silver nanowires (AgNWs) have also been considered as an excellent material for transparent conductive electrodes due to their high electrical conductivity, high aspect ratio, good transparency and other properties suitable for transparent electronics. Herein, we have presented a simple approach to combine the properties of graphene and silver nanowires to develop a good transparent and flexible conductive electrode on polyethylene terephthalate (PET) sheet. The transmittance of the as-prepared graphene/AgNWs electrode was found to be 82.6% at 550 nm, which is comparable to the transmittance of commercial transparent conductive electrodes. The sheet resistance of the electrode was determined to be 212.59 kΩ/sq (measured by four point-probe method). The low sheet resistance of the graphene/AgNW electrode makes it suitable for use in a variety of electronic devices, including solar cells, supercapacitors, flexible displays, and touch sensitive screens. The proposed approach is highly scalable and can boost the fabrication of low cost and highly transparent electrodes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

All data generated or used in the study are presented in the submitted article.

References

  1. T.-B. Song, N. Li, Emerging transparent conducting electrodes for organic light emitting diodes. Electronics. 3(1), 190–204 (2014)

    Article  Google Scholar 

  2. K.-H. Ok, J. Kim, S.-R. Park, Y. Kim, C.-J. Lee, S.-J. Hong, M.-G. Kwak, N. Kim, C.J. Han, J.-W. Kim, Ultra-thin and smooth transparent electrode for flexible and leakage-free organic light-emitting diodes. Sci. Rep. 5(1), 1–8 (2015)

    Article  Google Scholar 

  3. C. Wang, K. Xia, H. Wang, X. Liang, Z. Yin, Y. Zhang, Advanced carbon for flexible and wearable electronics. Adv. Mater. 31(9), 1801072 (2019)

    Article  Google Scholar 

  4. S.K. Maurya, H.R. Galvan, G. Gautam, X. Xu, Recent progress in transparent conductive materials for photovoltaics. Energies. 15(22), 8698 (2022)

    Article  CAS  Google Scholar 

  5. H. Jang, Y.J. Park, X. Chen, T. Das, M.S. Kim, J.H. Ahn, Graphene-based flexible and stretchable electronics. Adv. Mater. 28(22), 4184–4202 (2016)

    Article  CAS  Google Scholar 

  6. J.-H. Ahn, B.H. Hong, Graphene for displays that bend. Nat. Nanotechnol. 9(10), 737–738 (2014)

    Article  Google Scholar 

  7. F. Bonaccorso, Z. Sun, T. Hasan, A.C. Ferrari, Graphene photonics and optoelectronics. Nat. Photonics. 4(9), 611–622 (2010)

    Article  CAS  Google Scholar 

  8. S.J. Kim, K. Choi, B. Lee, Y. Kim, B.H. Hong, Materials for flexible, stretchable electronics: graphene and 2D materials. Annu. Rev. Mater. Sci. 45, 63–84 (2015)

    Article  CAS  Google Scholar 

  9. J.A. Rogers, T. Someya, Y. Huang, Materials and mechanics for stretchable electronics. Science 327(5973), 1603–1607 (2010)

    Article  CAS  Google Scholar 

  10. H. Li, Y. Liu, A. Su, J. Wang, Y. Duan, Promising hybrid graphene-silver nanowire composite electrode for flexible organic light-emitting diodes. Sci. Rep. 9(1), 17998 (2019)

    Article  Google Scholar 

  11. M.J. Nikzad, N. Mohamadbeigi, S.K. Sadrnezhaad, S.M. Mahdavi, Fabrication of a highly flexible and affordable transparent electrode by aligned u-shaped copper nanowires using a new electrospinning collector with convenient transferability. ACS Omega. 4(25), 21260–21266 (2019)

    Article  CAS  Google Scholar 

  12. H. Essaidi, L. Cattin, Z. El Jouad, S. Touihri, M. Blais, E. Ortega, G. Louarn, M. Morsli, T. Abachi, T. Manoubi, Indium free electrode, highly flexible, transparent and conductive for optoelectronic devices. Vacuum. 153, 225–231 (2018)

    Article  CAS  Google Scholar 

  13. H.T. Dao, H. Makino, Improving electrical conductivity and its thermal stability of Al-doped ZnO polycrystalline films using ultrathin Al film as a passivation layer. Sol. Energy Mater. Sol. Cells. 203, 110159 (2019)

    Article  CAS  Google Scholar 

  14. S. Lu, Y. Sun, K. Ren, K. Liu, Z. Wang, S. Qu, Recent development in ITO-free flexible polymer solar cells. Polymers. 10(1), 5 (2017)

    Article  Google Scholar 

  15. E.J. López-Naranjo, L.J. González-Ortiz, L.M. Apátiga, E.M. Rivera-Muñoz, A. Manzano-Ramírez, Transparent electrodes: a review of the use of carbon-based nanomaterials. J. Nanomater. 2016 (2016). https://doi.org/10.1155/2016/4928365

    Article  Google Scholar 

  16. S. Huang, Y. Liu, F. Yang, Y. Wang, T. Yu, D. Ma, Metal nanowires for transparent conductive electrodes in flexible chromatic devices: a review. Environ. Chem. Lett. 20(5), 3005–3037 (2022)

    Article  CAS  Google Scholar 

  17. Y. Zhou, R. Azumi, Carbon nanotube based transparent conductive films: progress, challenges, and perspectives. Sci. Technol. Adv. Mater. 17(1), 493–516 (2016)

    Article  CAS  Google Scholar 

  18. Y.S. Woo, Transparent conductive electrodes based on graphene-related materials. Micromachines. 10(1), 13 (2018)

    Article  Google Scholar 

  19. Z. Wang, C.P. Puls, N.E. Staley, Y. Zhang, A. Todd, J. Xu, C.A. Howsare, M.J. Hollander, J.A. Robinson, Y. Liu, Technology ready use of single layer graphene as a transparent electrode for hybrid photovoltaic devices. Phys. E: Low-dimens. Syst. Nanostruct. 44(2), 521–524 (2011)

    Article  CAS  Google Scholar 

  20. M.A. Shinde, K. Mallikarjuna, J. Noh, H. Kim, Highly stable silver nanowires based bilayered flexible transparent conductive electrode. Thin Solid Films. 660, 447–454 (2018)

    Article  CAS  Google Scholar 

  21. T.K. Lahane, J. Agrawal, V. Singh, Optimization of polyol synthesized silver nanowires for transparent conducting electrodes application. Mater. Today Proc. 59, 257–263 (2022)

    Article  CAS  Google Scholar 

  22. M.R. Azani, A. Hassanpour, T. Torres, Benefits, problems, and solutions of silver nanowire transparent conductive electrodes in indium tin oxide (ITO)-free flexible solar cells. Adv. Energy Mater. 10(48), 2002536 (2020)

    Article  CAS  Google Scholar 

  23. A. Madeira, M. Plissonneau, L. Servant, I.A. Goldthorpe, Tréguer-Delapierre, increasing silver nanowire network stability through small molecule passivation. Nanomaterials 9(6), 899 (2019)

    Article  CAS  Google Scholar 

  24. R. Zhang, M. Engholm, Recent progress on the fabrication and properties of silver nanowire-based transparent electrodes. Nanomaterials. 8(8), 628 (2018)

    Article  Google Scholar 

  25. C. Choi, E. Schlenker, H. Ha, J.Y. Cheong, B. Hwang, Versatile applications of silver nanowire-based electrodes and their impacts. Micromachines. 14(3), 562 (2023)

    Article  CAS  Google Scholar 

  26. S. Iravani, H. Korbekandi, S.V. Mirmohammadi, B. Zolfaghari, Synthesis of silver nanoparticles: chemical, physical and biological methods. Res. Pharm. Sci. 9(6), 385 (2014)

    CAS  Google Scholar 

  27. H. Sim, C. Kim, S. Bok, M.K. Kim, H. Oh, G.-H. Lim, S.M. Cho, B. Lim, Five-minute synthesis of silver nanowires and their roll-to-roll processing for large-area organic light emitting diodes. Nanoscale. 10(25), 12087–12092 (2018)

    Article  CAS  Google Scholar 

  28. K.S. Lau, S.X. Chin, S.T. Tan, F.S. Lim, W.S. Chang, C.C. Yap, M.H.H. Jumali, S. Zakaria, S.W. Chook, C.H. Chia, Silver nanowires as flexible transparent electrode: role of PVP chain length. J. Alloys Compd. 803, 165–171 (2019)

    Article  Google Scholar 

  29. S. Kumar, J.K. Goswamy, P. Kumar, S. Kumar, Chemically derived graphene nanoribbons from carbon nanotubes for supercapacitor application. Mater. Today Proc. 50, 1511–1515 (2022)

    Article  Google Scholar 

  30. S. Rattan, S. Kumar, J.K. Goswamy,  Graphene oxide reduction using green chemistry. Mater. Today Proc. 26, 3327–3331 (2020)

    Article  CAS  Google Scholar 

  31. S. Kumar, R.R. Nair, P.B. Pillai, S.N. Gupta, M.A. Iyengar, A.K. Sood, Graphene oxide-MnFe2O4 magnetic nanohybrids for efficient removal of lead and arsenic from water. ACS Appl. Mater. Interfaces. 6(20), 17426–17436 (2014)

    Article  CAS  Google Scholar 

  32. S. Rattan, M. Kaur, S. Kumar, J.K. Goswamy, Synergistic effect of reduced graphene oxide and carbon nanotubes for improved supercapacitive performance electrodes. J. Mater. Sci.: Mater. Electron. 33(36), 26841–26851 (2022)

    Google Scholar 

  33. Y. Lei, T. Zhang, Y.-C. Lin, T. Granzier-Nakajima, G. Bepete, D.A. Kowalczyk, Z. Lin, D. Zhou, T.F. Schranghamer, A. Dodda, Graphene and beyond: recent advances in two-dimensional materials synthesis, properties, and devices. ACS Nanosci. Au (2022). https://doi.org/10.1021/acsnanoscienceau.2c00017

    Article  Google Scholar 

  34. S. Sharma, K. Singh, S. Kumar, K. Bhatt, Y. Dwivedi, A. Rana, C.C. Tripathi, Fabrication of reduced graphene oxide modified poly (3, 4-ethylenedioxythiophene) polystyrene sulfonate based transparent conducting electrodes for flexible optoelectronic application. SN Appl. Sci. 3, 1–8 (2021)

    Article  Google Scholar 

  35. X. An, T. Simmons, R. Shah, C. Wolfe, K.M. Lewis, M. Washington, S.K. Nayak, S. Talapatra, S. Kar, Stable aqueous dispersions of noncovalently functionalized graphene from graphite and their multifunctional high-performance applications. Nano Lett. 10(11), 4295–4301 (2010)

    Article  CAS  Google Scholar 

  36. S.V. Kumar, A.P. Bafana, P. Pawar, A. Rahman, S.A. Dahoumane, C.S. Jeffryes, High conversion synthesis of < 10 nm starch-stabilized silver nanoparticles using microwave technology. Sci. Rep. 8(1), 5106 (2018)

    Article  Google Scholar 

Download references

Funding

Science and Engineering Research Board, Department of Science and Technology, Government of India.

Author information

Authors and Affiliations

Authors

Contributions

MK: investigation, methodology, experimentation and writing original draft. PB: data validation and characterization. T: data curation and experimentation. A: data curation experimentation. SK: conceptualization, editing and supervision. JKG: supervision and editing.

Corresponding authors

Correspondence to Suresh Kumar or J. K. Gowsamy.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical approval

This study does not involve any studies with human participants and/or animals.

Informed consent

Informed consent was received from all authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaur, M., Bhatt, P., Twinkle et al. Graphene-silver nanowires hybrid electrode on PET sheet for improved-performance transparent electronics. J Mater Sci: Mater Electron 34, 2287 (2023). https://doi.org/10.1007/s10854-023-11703-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-11703-0

Navigation