Skip to main content
Log in

Perovskite KNbO3 nanostructure for high-response photoelectrochemical ultraviolet detector

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

KNbO3, a type of perovskite material, was widely developed for various devices due to its excellent light absorption properties, non-toxicity, chemical stability, ferroelectricity, and so on. As ferroelectric material, the KNbO3 can generate a depolarized electric field for separation of photon-generated carriers. In this work, KNbO3 nanocubes were synthesized using a hydrothermal method and integrated as a photoanode material into a PEC-type UV detector. The UV detector possesses a fast response time with the corresponding rising and recovery times of 72 and 28 ms under 35 mW cm−2 irradiance at 365 nm. In addition, the UV detector presents significant visible light blindness and good linearity and is self-powered. This work indicated that the KNbO3 could be used as a new option for the active layer of the UV detector.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. J. Chen, S. Loeb, J.-H. Kim, LED revolution: fundamentals and prospects for UV disinfection applications. Environ. Sci. 3, 188–202 (2017)

    CAS  Google Scholar 

  2. M.M. Delorme, J.T. Guimarães, N.M. Coutinho et al., Ultraviolet radiation: an interesting technology to preserve quality and safety of milk and dairy foods. Trends Food Sci. Technol. 102, 146–154 (2020)

    Article  CAS  Google Scholar 

  3. T.W.R. Hiller, D.E. O’Sullivan, D.R. Brenner et al., Solar ultraviolet radiation and breast cancer risk: a systematic review and meta-analysis. Environ. Health Perspect. 128, 16002 (2020)

    Article  Google Scholar 

  4. X. Sun, N. Zhang, C. Yin et al., Ultraviolet radiation and melanomagenesis: from mechanism to immunotherapy. Front. Oncol. 10, 951 (2020)

    Article  Google Scholar 

  5. R.L. McKenzie, P.J. Aucamp, A.F. Bais et al., Ozone depletion and climate change: impacts on UV radiation. Photochem. Photobiol. Sci. 10, 182–198 (2011)

    Article  CAS  Google Scholar 

  6. L. Sang, M. Liao, M. Sumiya, A comprehensive review of semiconductor ultraviolet photodetectors: from thin film to one-dimensional nanostructures. Sensors (Basel) 13, 10482–10518 (2013)

    Article  CAS  Google Scholar 

  7. P. Gu, X. Zhu, D. Yang, Effect of annealing temperature on the performance of photoconductive ultraviolet detectors based on ZnO thin films. Appl. Phys. A (2019). https://doi.org/10.1007/s00339-018-2361-3

    Article  Google Scholar 

  8. S.Z. Umbaidilah, N.A.M. Asib, A.N. Afaah et al., A review on the effect of metal doped ZnO nanostructures on ultraviolet photoconductive sensor performance. AIP Conf. Proc. 2151, 020038 (2019)

    Article  Google Scholar 

  9. Y. Feng, Y. Zhang, Y. Wang et al., Frequency response characteristics of pyroelectric effect in p-n junction UV detectors. Nano Energy 54, 429–436 (2018)

    Article  CAS  Google Scholar 

  10. Y. Zou, Y. Zhang, Y. Hu et al., Ultraviolet detectors based on wide bandgap semiconductor nanowire: a review. Sensors (Basel) 18, 2072 (2018)

    Article  Google Scholar 

  11. M. Zhang, Y. Wang, F. Teng et al., A photoelectrochemical type self-powered ultraviolet photodetector based on GaN porous films. Mater. Lett. 162, 117–120 (2016)

    Article  CAS  Google Scholar 

  12. J. Zhang, S. Jiao, D. Wang et al., Solar-blind ultraviolet photodetection of an α-Ga2O3 nanorod array based on photoelectrochemical self-powered detectors with a simple, newly-designed structure. J. Mater. Chem. C 7, 6867–6871 (2019)

    Article  CAS  Google Scholar 

  13. J. Fan, Y. Ma, C. Zhang et al., Thermodynamically self-healing 1D–3D hybrid perovskite solar cells. Adv. Energy Mater. 8, 1703421 (2018)

    Article  Google Scholar 

  14. K. Wang, L. Zheng, T. Zhu et al., Efficient perovskite solar cells by hybrid perovskites incorporated with heterovalent neodymium cations. Nano Energy 61, 352–360 (2019)

    Article  CAS  Google Scholar 

  15. W. Deng, H. Fang, X. Jin et al., Organic–inorganic hybrid perovskite quantum dots for light-emitting diodes. J. Mater. Chem. C 6, 4831–4841 (2018)

    Article  CAS  Google Scholar 

  16. S. Yan, W. Tian, H. Chen et al., Synthesis of 0D manganese-based organic-inorganic hybrid perovskite and its application in lead-free red light-emitting diode. Adv. Funct. Mater. 31, 2100855 (2021)

    Article  CAS  Google Scholar 

  17. S. Lim, M. Ha, Y. Lee et al., Large-area, solution-processed, hierarchical MAPbI3 nanoribbon arrays for self-powered flexible photodetectors. Adv. Opt. Mater. 6, 1800615 (2018)

    Article  Google Scholar 

  18. A. Buin, P. Pietsch, J. Xu et al., Materials processing routes to trap-free halide perovskites. Nano Lett. 14, 6281–6286 (2014)

    Article  CAS  Google Scholar 

  19. H. Zhao, L. Wei, P. Zeng et al., Formation of highly uniform thinly-wrapped CsPbX3@silicone nanocrystals via self-hydrolysis: suppressed anion exchange and superior stability in polar solvents. J. Mater. Chem. C 7, 9813–9819 (2019)

    Article  CAS  Google Scholar 

  20. M. Chen, Q. Dong, F.T. Eickemeyer et al., High-performance lead-free solar cells based on tin-halide perovskite thin films functionalized by a divalent organic cation. ACS Energy Lett. 5, 2223–2230 (2020)

    Article  CAS  Google Scholar 

  21. X.-G. Zhao, D. Yang, J.-C. Ren et al., Rational design of halide double perovskites for optoelectronic applications. Joule 2, 1662–1673 (2018)

    Article  CAS  Google Scholar 

  22. F. Hao, C.C. Stoumpos, D.H. Cao et al., Lead-free solid-state organic–inorganic halide perovskite solar cells. Nat. Photonics 8, 489–494 (2014)

    Article  CAS  Google Scholar 

  23. J.H. Barrett, Dielectric constant in perovskite type crystals. Phys. Rev. 86, 118–120 (1952)

    Article  CAS  Google Scholar 

  24. H.D. Megaw, Ferroelectricity in Crystals (Methuen, London, 1957)

    Google Scholar 

  25. S. Hisatake, K. Shibuya, T. Kobayashi, Ultrafast traveling-wave electro-optic deflector using domain-engineered LiTaO3 crystal. Appl. Phys. Lett. 87, 081101 (2005)

    Article  Google Scholar 

  26. T. Zhao, Z.-H. Chen, F. Chen et al., Electrical and optical properties of strongly reduced epitaxial BaTiO3−x thin films. Appl. Phys. Lett. 77, 4338–4340 (2000)

    Article  CAS  Google Scholar 

  27. S. Selvarajan, N.R. Alluri, A. Chandrasekhar et al., Direct detection of cysteine using functionalized BaTiO3 nanoparticles film based self-powered biosensor. Biosens. Bioelectron. 91, 203–210 (2017)

    Article  CAS  Google Scholar 

  28. Y. Zhang, X. Zhao, J. Chen et al., Self-polarized BaTiO3 for greatly enhanced performance of ZnO UV photodetector by regulating the distribution of electron concentration. Adv. Funct. Mater. 30, 1907650 (2019)

    Article  Google Scholar 

  29. F. Jing, D. Zhang, F. Li et al., High performance ultraviolet detector based on SrTiO3/TiO2 heterostructure fabricated by two steps in situ hydrothermal method. J. Alloys Compd. 650, 97–101 (2015)

    Article  CAS  Google Scholar 

  30. Z. Zhu, K. Wei, H. Li et al., High-sensitivity photoelectrochemical visible-blind ultraviolet detector using SrTiO3 nanocrystalline for weak irradiation. J. Phys. D 54, 095104 (2020)

    Article  Google Scholar 

  31. B. Bajorowicz, E. Kowalska, J. Nadolna et al., Preparation of CdS and Bi2S3 quantum dots co-decorated perovskite-type KNbO3 ternary heterostructure with improved visible light photocatalytic activity and stability for phenol degradation. Dalton Trans. 47, 15232–15245 (2018)

    Article  CAS  Google Scholar 

  32. R. Ganeshkumar, K.V. Sopiha, P. Wu et al., Ferroelectric KNbO3 nanofibers: synthesis, characterization and their application as a humidity nanosensor. Nanotechnology 27, 395607 (2016)

    Article  Google Scholar 

  33. S. Jia, Y. Su, B. Zhang et al., Few-layer MoS2 nanosheet-coated KNbO3 nanowire heterostructures: piezo-photocatalytic effect enhanced hydrogen production and organic pollutant degradation. Nanoscale 11, 7690–7700 (2019)

    Article  CAS  Google Scholar 

  34. V. Panwar, G.W. Kim, G. Anoop et al., Seed layer-assisted fabrication of KNbO3 nanowires on Cu foil. J. Alloys Compd. 691, 606–612 (2017)

    Article  CAS  Google Scholar 

  35. T. Choi, S. Lee, Y.J. Choi et al., Switchable ferroelectric diode and photovoltaic effect in BiFeO3. Science 324, 63–66 (2009)

    Article  CAS  Google Scholar 

  36. W. Ji, K. Yao, Y.C. Liang, Bulk photovoltaic effect at visible wavelength in epitaxial ferroelectric BiFeO3 thin films. Adv. Mater. 22, 1763–1766 (2010)

    Article  CAS  Google Scholar 

  37. Q. Wali, A. Fakharuddin, I. Ahmed et al., Multiporous nanofibers of SnO2 by electrospinning for high efficiency dye-sensitized solar cells. J. Mater. Chem. A 2, 17427–17434 (2014)

    Article  CAS  Google Scholar 

  38. Y. Wang, L. Chen, H. Zhou et al., Rutile TiO2 nanowire arrays interconnected with ZnO nanosheets for high performance electrochemical UV sensors. J. Mater. Chem. C 7, 8011–8018 (2019)

    Article  CAS  Google Scholar 

  39. L. Jiang, Y. Qiu, Z. Yi, Potassium niobate nanostructures: controllable morphology, growth mechanism, and photocatalytic activity. J. Mater. Chem. A 1, 2878 (2013)

    Article  CAS  Google Scholar 

  40. R. Wang, Y. Zhu, Y. Qiu et al., Synthesis of nitrogen-doped KNbO3 nanocubes with high photocatalytic activity for water splitting and degradation of organic pollutants under visible light. Chem. Eng. J. 226, 123–130 (2013)

    Article  CAS  Google Scholar 

  41. T. Zhang, K. Zhao, J. Yu et al., Photocatalytic water splitting for hydrogen generation on cubic, orthorhombic, and tetragonal KNbO3 microcubes. Nanoscale 5, 8375–8383 (2013)

    Article  CAS  Google Scholar 

  42. X. Wu, S. Yin, Q. Dong et al., Synthesis of high visible light active carbon doped TiO2 photocatalyst by a facile calcination assisted solvothermal method. Appl. Catal. B 142–143, 450–457 (2013)

    Article  Google Scholar 

  43. A. Winiarski, T. Neumann, B. Mayer et al., XPS study of KTaO3, KTa0.69Nb0.31O3, and KNbO3 single crystals. Phys. Status Solidi (b) 183, 475–480 (1994)

    Article  CAS  Google Scholar 

  44. C. Lu, A. Kuang, G. Huang et al., XPS study on composition and structure of epitaxial KTa1− xNbxO3 (KTN) thin films prepared by the sol-gel process. J. Mater. Sci. 31, 3081–3085 (1996)

    Article  CAS  Google Scholar 

  45. Y.-Z. Zheng, X. Tao, L.-X. Wang et al., Novel ZnO-based film with double light-scattering layers as photoelectrodes for enhanced efficiency in dye-sensitized solar cells. Chem. Mater. 22, 928–934 (2009)

    Article  Google Scholar 

  46. C.-P. Hsu, K.-M. Lee, J.T.-W. Huang et al., EIS analysis on low temperature fabrication of TiO2 porous films for dye-sensitized solar cells. Electrochim. Acta 53, 7514–7522 (2008)

    Article  CAS  Google Scholar 

  47. Y. Wang, W. Han, B. Zhao et al., Performance optimization of self-powered ultraviolet detectors based on photoelectrochemical reaction by utilizing dendriform titanium dioxide nanowires as photoanode. Sol. Energy Mater. Sol. Cells 140, 376–381 (2015)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was financially supported by the financially supported from Basic Research Project of Qinghai Province (Nos. 2022-ZJ-762)

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by Lian Zhou and Zhaowen Bai. The first draft of the manuscript was written by Zhaowen Bai and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Xiaojun Pan.

Ethics declarations

Conflict of interest

The authors have no conflict of interest to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 4949 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, L., Bai, Z., Wang, G. et al. Perovskite KNbO3 nanostructure for high-response photoelectrochemical ultraviolet detector. J Mater Sci: Mater Electron 34, 2259 (2023). https://doi.org/10.1007/s10854-023-11699-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-11699-7

Navigation