Skip to main content
Log in

Study of spin-coated undoped, Sn3+ doped and Sn3+/Zn2+-codoped In2O3 films and their photocatalytic activity performance

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Undoped, Sn3+-doped, and Sn3+/Zn2+-codoped In2O3 films were synthesized using a time- and cost-efficient spin-coating technique. XRD analysis confirms that all films crystallize in a single cubic bixbyite phase. Morphological and roughness changes associated to Sn3+/Zn2+-doping are revealed by both AFM and SEM analysis, while FTIR and XRF analysis confirm the incorporation of Sn3+/Zn2+ into the In-sub lattice of the In2O3 structure. UV–Vis. analysis demonstrates that the doping shifts the absorption edge towards longer wavelengths, widens the Urbach’s tail and reduces the gap energy. Room-temperature photoluminescence (PL) spectra display four main bands, their intensities decreasing upon doping. EIS analysis proves that the doping and codoping decreases the electrical impedance of the films. Moreover, the introduction of Sn3+/Zn2+ into the In2O3 lattice enhances the photo-degradation of methylene blue (MB), finally, a proposed photocatalytic mechanism is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3.
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The datasets generated and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. M. Ghemid, H. Gueddaoui, M. Hemissi, M.R. Khelladi, R. Bourzami, Thickness effect on structural, optoelectronic properties and photocatalytic activity of low-cost spin-coated In2O3 films. Chem. Phys. Lett. 784, 139089 (2021)

    Article  CAS  Google Scholar 

  2. M. Ghemid, H. Gueddaoui, R. Brahimi, M. Trari, Simple and effective synthesis via sol–gel of Zn-doped ITO films and their microstructural, optical, and photoelectrochemical properties. Appl. Phys. A 128(816), 1–15 (2022)

    Google Scholar 

  3. N. Xia, R.A. Gerhardt, Fabrication and characterization of highly transparent and conductive indium tin oxide films made with different solution-based methods. Mater. Res. Express 3, 1–11 (2016)

    Article  Google Scholar 

  4. M. Putri, C.Y. Koo, J.A. Lee, J.J. Kim, H.Y. Lee, Transparent conducting indium zinc tin oxide thin films with low indium content deposited by radio frequency magnetron sputtering. Thin Solid Films 559, 44–48 (2014)

    Article  CAS  Google Scholar 

  5. G. Tian, Y. Wu, S. Wu, S. Huang, J. Gao, Influence of Mn and Mg oxides on the performance of In2O3 catalysts for CO2 hydrogenation to methanol. Chem. Phys. Lett. 786, 139173 (2022)

    Article  CAS  Google Scholar 

  6. S. Lee et al., Structural, electrical, and optical properties of Zn–In–Sn–O films for silicon heterojunction solar cells. Thin Solid Films 589, 233–237 (2015)

    Article  CAS  Google Scholar 

  7. S.W. Heo, Y.D. Ko, Y.S. Kim, D.K. Moon, Enhanced performance in polymer light emitting diodes using an indium-zinc-tin oxide transparent anode by the controlling of oxygen partial pressure at room temperature. J. Mater. Chem. C 1, 7009–7019 (2013)

    Article  CAS  Google Scholar 

  8. K. Li, P. Chen, K. Chang, S. Hsu, D. Jan, Indium–Zinc–Tin–Oxide film prepared by reactive magnetron sputtering for electrochromic applications. Materials (Basel) 11, 2221 (2018)

    Article  Google Scholar 

  9. T.F. Choo, N.U. Saidin, K.Y. Kok, A novel self-heating zinc oxide/indium tin oxide based hydrogen gas sensor: dual sensing mode of hydrogen gas detection. Chem. Phys. Lett. 713, 180–184 (2018)

    Article  CAS  Google Scholar 

  10. K.J. Kumar, N.R.C. Raju, A. Subrahmanyam, Thickness dependent physical and photocatalytic properties of ITO thin films prepared by reactive DC magnetron sputtering. Appl. Surf. Sci. 257, 3075–3080 (2011)

    Article  CAS  Google Scholar 

  11. V. Shanmuganathan, J.S. Kumar, R. Pachaiappan, P. Thangadurai, Transition metal ion-doped In2O3 nanocubes: investigation of their photocatalytic degradation activity under sunlight. Nanoscale Adv. 3, 471–485 (2021)

    Article  CAS  Google Scholar 

  12. Y. Keriti, A. Keffous, K. Dib, S. Djellab, M. Trari, Photoluminescence and photocatalytic properties of Er3+-doped In2O3 thin films prepared by sol–gel: application to Rhodamine B degradation under solar light. Res. Chem. Intermed. 44, 1537–1550 (2017)

    Article  Google Scholar 

  13. C. Nefzi, N. Beji, M. Souli, A. Mejri, Effect of gamma-irradiation on optical, structural and electrical properties of In2O3: F thin films for photocatalysis application. Opt. Laser Technol. J. 112, 85–92 (2020)

    Article  Google Scholar 

  14. K.R. Reyes-Gil, E.A. Reyes-Garcıa, D. Raftery, Nitrogen-doped In2O3 thin film electrodes for photocatalytic water splitting. J. Phys. Chem. C 111, 14579–14588 (2007)

    Article  CAS  Google Scholar 

  15. A. Donato et al., RF sputtered ZnO–ITO films for high temperature CO sensors. Thin Solid Films 517, 6184–6187 (2009)

    Article  CAS  Google Scholar 

  16. S. Lee et al., Structural, electrical, and optical properties of Zn–In–Sn–O fi lms for silicon heterojunction solar cells. Thin Solid Films 589, 233–237 (2015)

    Article  CAS  Google Scholar 

  17. A. Subrahmanyam, A. Rajakumar et al., Efficacy of titanium doped-indium tin oxide (Ti/TiO2-ITO) films in rapid oxygen generation under photocatalysis and their suitability for bio-medical application. Phys. Chem. Chem. Phys. 16, 24790–24799 (2014)

    Article  CAS  Google Scholar 

  18. C. Cao et al., Compositional analysis and optical properties of Ag-doped ITO films C1s. Mater. Sci. Eng. B 176, 1430–1434 (2011)

    Article  CAS  Google Scholar 

  19. J.X.U. In, W.E.I.Z. Hang, M.E.N.G.P. Eng, J.I.D. Ai, Light-extraction enhancement of GaN-based 395 nm flip-chip light-emitting diodes by an Al-doped ITO transparent conductive electrode. Opt. Lett. 43, 2684–2687 (2018)

    Article  Google Scholar 

  20. D.B. Buchholz, J. Liu, T.J. Marks, M. Zhang, R.P.H. Chang, Control and characterization of the structural, electrical, and optical properties of amorphous Zinc–Indium–Tin Oxide. Thin Films. 1, 2147–2153 (2009)

    CAS  Google Scholar 

  21. J. Ni et al., Charge transport and optical properties of MOCVD-derived highly transparent and conductive Mg- and Sn-doped In2O3 thin films. Inorg. Chem. 44, 6071–6076 (2005)

    Article  CAS  Google Scholar 

  22. C. Jin, I. You, H. Kim, Effect of rapid thermal annealing on the properties of spin-coated In–Zn–Sn–O films. Curr. Appl. Phys. 13, 177–181 (2013)

    Article  Google Scholar 

  23. D. Lee et al., Effects of annealing and plasma treatment on the electrical and optical properties of spin-coated ITZO films. J. Alloys Compd. 583, 535–538 (2014)

    Article  CAS  Google Scholar 

  24. L. Dong, G.S. Zhu, Preparation of indium tin oxide ( ITO) thin film with (400) preferred orientation by sol–gel spin coating method. J. Mater. Sci. Mater. Electron. 30, 8047–8054 (2019)

    Article  CAS  Google Scholar 

  25. A. Yahia et al., Structural, optical, morphological and electrical properties of indium oxide thin films prepared by sol gel spin coating process. Surf. Interfaces 14, 158–165 (2018)

    Article  Google Scholar 

  26. K. Daoudi et al., Densification of In2O3: Sn multilayered films elaborated by the dip-coating sol–gel route. Thin Solid Films 445, 20–25 (2003)

    Article  CAS  Google Scholar 

  27. D.H. Park, K.Y. Son, J.H. Lee, J.J. Kim, J.S. Lee, Effect of ZnO addition in In2O3 ceramics: defect chemistry and sintering behavior. Solid State Ionics 172, 431–434 (2004)

    Article  CAS  Google Scholar 

  28. K. Seo, D. Park, J. Lee, J. Kim, Co-doping effect of SnO2 and ZnO in In2O3 ceramics: change in solubility limit and electrical properties. Solid State Ionics 177, 601–605 (2006)

    Article  CAS  Google Scholar 

  29. A. Chetoui, M. Ghemid, M.R. Khelladi, A. Zouaoui, First synthesis of monodispersed microparticles of copper oxide films by pulsed spray pyrolysis (PSP): structural, optical, and morphological investigations. Appl. Phys. A 126, 1–7 (2020)

    Article  Google Scholar 

  30. P. Taylor, G.K. Williamson, R.E. Smallman, Dislocation densities in some annealed and cold-worked metals from measurements on the X-ray Debye–Scherrer spectrum. Philos. Mag. 1, 37–41 (1956)

    Google Scholar 

  31. M. Jothibas, C. Manoharan, S. Ramalingam, S. Dhanapandian, M. Bououdina, Spectroscopic analysis, structural, microstructural, optical and electrical properties of Zn-doped In2O3 thin films. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 122, 171–178 (2014)

    Article  CAS  Google Scholar 

  32. K.J. Chen et al., An investigation of the microstructure, optical and electrical properties of ZITO thin film using the sol–gel method. J. Sol–Gel Sci. Technol. 54, 347–354 (2010)

    Article  CAS  Google Scholar 

  33. G. Heo et al., Fabrication of cosputtered Zn–In–Sn–O films and their applications to organic light-emitting diodes. Solid State Commun. 149, 1731–1734 (2009)

    Article  CAS  Google Scholar 

  34. C. Lv et al., A theoretical study on influence of oxygen vacancies on the electronic properties of indium oxide and indium tin oxide. Int. Conf. Solid State Dev. Mater. 47, 726–727 (2005)

    Google Scholar 

  35. H. Han, J.W. Mayer, T.L. Alford, H. Han, J.W. Mayer, Band gap shift in the indium-tin-oxide films on polyethylene napthalate after thermal annealing in air. J. Appl. Phys. 100, 083715–083716 (2007)

    Article  Google Scholar 

  36. G.B. Palmer, K.R. Poeppelmeier, T.O. Mason, Conductivity and Transparency of ZnO/SnO2-Cosubstituted In2O3. Chem. Mater. 9, 3121–3126 (1997)

    Article  CAS  Google Scholar 

  37. H. Taha et al., Improved mechanical properties of sol–gel derived ITO thin films via Ag doping. Mater. Today Commun. 14, 210–224 (2018)

    Article  CAS  Google Scholar 

  38. X. Tang, C. Hseih, F. Ou, S.-T. Ho, Ohmic contacts of ZnO/SnO2 equal-cosubstituted In2O3 films to n-InP and p-GaAs. RSC Adv. 5, 98194–98202 (2015)

    Article  CAS  Google Scholar 

  39. R. Bourzami, M. Khalil, D. Chebli, A. Bouguettoucha, A. Amrane, Bottom-up construction of reduced-graphene-oxide-anchored spinel their synergy in photocatalytic water reduction. J. Environ. Chem. Eng. 9, 105307 (2021)

    Article  CAS  Google Scholar 

  40. H.M. Ali, Characterization of a new transparent-conducting material of ZnO doped ITO thin films. Phys. Stat. Sol. 2752, 2742–2752 (2005)

    Google Scholar 

  41. F.Z. Bedia et al., Effect of tin doping on optical properties of nanostructured ZnO thin films grown by spray pyrolysis technique. J. Alloys Compd. 616, 312–318 (2014)

    Article  CAS  Google Scholar 

  42. T.V. Vimalkumar, N. Poornima, C.S. Kartha, K.P. Vijayakumar, Effect of precursor medium on structural, electrical and optical properties of sprayed polycrystalline ZnO thin films. Mater. Sci. Eng. B 175, 29–35 (2010)

    Article  CAS  Google Scholar 

  43. M. Lee, W.C. Choi, E.K. Kim, C.K. Kim, S. Min, Characterization of the oxidized indium thin films with thermal oxidation. Thin Solid Films 279, 1–3 (1996)

    Article  CAS  Google Scholar 

  44. S. Kundu, P.K. Biswas, Synthesis and photoluminescence property of nanostructured sol–gel indium tin oxide film on glass. Chem. Phys. Lett. 414, 107–110 (2005)

    Article  CAS  Google Scholar 

  45. C. Wang, D. Chen, X. Jiao, C. Chen, Lotus-root-like In2O3 nanostructures: fabrication, characterization, and photoluminescence properties. J. Phys. Chem. C 111, 13398–13403 (2007)

    Article  CAS  Google Scholar 

  46. Z. He et al., Mechanistic insight into the charge carrier separation and molecular oxygen activation of manganese doping BiOBr hollow microspheres. J. Colloid Interface Sci. 629, 355–367 (2023)

    Article  CAS  Google Scholar 

  47. X. Fu et al., Synergy of Z-scheme heterostructure with interfacial S−O bonding in In2S3/BiOBr for efficient tetracycline hydrochloride degradation and Cr(VI) reduction. J. Alloys Compd. 936, 168202 (2023)

    Article  CAS  Google Scholar 

  48. Z. He, H. Yang, N.H. Wong, L. Ernawati, J. Sunarso, Z. Huang, Y. Xia, Y. Wang, J. Su, X. Fu, Construction of Cu7S4@CuCo2O4 yolk–shell microspheres composite and elucidation of its enhanced photocatalytic activity, mechanism, and pathway for carbamazepine degradation. Small (2023). https://doi.org/10.1002/smll.202207370

    Article  Google Scholar 

  49. T.M. Aper, F.K. Yam, K.P. Beh, Properties of nitrogen-doped indium oxide films prepared using chemical vapor deposition technique for photoelectrochemical application. Mater. Chem. Phys. 275, 125244 (2022)

    Article  CAS  Google Scholar 

  50. B. Brahimi et al., Enhanced photodegradation of acid orange 61 by the novel hetero-junction CoFe2O4/AgCl. Opt. Mater. 121, 111576 (2021)

    Article  CAS  Google Scholar 

  51. B. Vileno et al., Stiffness alterations of single cells induced by UV in the presence of nano TiO2. Environ. Sci. Technol. 41, 5149–5153 (2007)

    Article  CAS  Google Scholar 

  52. R. Boulkroune et al., Hydrothermal synthesis of strontium-doped ZnS nanoparticles: structural, electronic and photocatalytic investigations. Bull. Mater. Sci. 42, 223–230 (2019)

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the University of Science and Technology Houari Boumediene-Algiers. The author H. Gueddaoui would like to thank Doctor Abdelmounaim Chetoui, a researcher at the Research Center in Semi-conductor Technology for Energetics (CRTSE) in Algeria, for his contributions to photoluminescence spectroscopic measurements.

Funding

This study funded by the Ministry of Higher Education and Scientific Research and the General Directorate of Scientific Research and Technological Development-Algeria.

Author information

Authors and Affiliations

Authors

Contributions

MG: PhD student, experimental part and elaboration of films. RB: Photocatalysis part, results interpretation and writing. HG: Director of the work, results interpretation and writing. NM: Equipment of the photocatalysis. MRK: AFM analysis. LO: Electrochemical measurements. SR: Stability study.

Corresponding author

Correspondence to Riadh Bourzami.

Ethics declarations

Conflict of interest

There are no conflict to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghemid, M., Bourzami, R., Gueddaoui, H. et al. Study of spin-coated undoped, Sn3+ doped and Sn3+/Zn2+-codoped In2O3 films and their photocatalytic activity performance. J Mater Sci: Mater Electron 34, 2296 (2023). https://doi.org/10.1007/s10854-023-11696-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-11696-w

Navigation