Skip to main content
Log in

Tuning humidity for highly selective detection of methanol and 2-butanone using MOF-derivatives NiO microrods

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Industrialization has brought about significant challenges to human well-being, primarily due to the emission of toxic volatile organic compounds (VOCs). Therefore, there is considerable interest and need to detect these VOCs with high selectivity and reproducibility. In this context, developing VOC sensing devices for continuous environmental monitoring and ensuring well-being is crucial. One way to produce inexpensive sensors with reasonable detection limits and selectivity is by using semiconductor metal oxides. Furthermore, they can withstand relative humidity variations in the detection process, which is still a significant challenge. In this study, we present a sensor based on NiO microrods derived from the decomposition of nickel-metal-organic frameworks (Ni-MOF) using microwave-assisted solvothermal (MAS) and thermal decomposition methods. The NiO microrods exhibited highly selective in detecting methanol (Response = 143 ± 27%) under dry atmospheric conditions and 2-butanone (Response = 119 ± 16%) under wet atmospheric conditions (43% RH) at a working temperature of 150 °C. In addition, the NiO sensor presented a relatively fast response time for detecting methanol (78 s) and 2-butanone (36 s) under optimal working conditions. Therefore, selectively modulating the relative humidity during the sensor analysis process, the NiO microrods act as a dual-mode sensor for methanol and 2-butanone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

We certify that we know the research data policy and the available data. The entire data generated or analyzed during this study is included in the published article.

References

  1. M. Khatib, H. Haick, ACS Nano. 16, 7080 (2022)

    Article  CAS  Google Scholar 

  2. J. van den Broek, I.C. Weber, A.T. Güntner, S.E. Pratsinis, Mater. Horizons. 8, 661 (2021)

    Article  Google Scholar 

  3. T.M. Perfecto, C.A. Zito, D.P. Volanti, Sens. Actuators B 334, 129684 (2021)

    Article  CAS  Google Scholar 

  4. K. Cerimi, U. Jäckel, V. Meyer, U. Daher, J. Reinert, S. Klar, J. Fungi. 8, 75 (2022)

    Article  CAS  Google Scholar 

  5. Q. Maqbool, N. Yigit, M. Stöger-Pollach, M.L. Ruello, F. Tittarelli, G. Rupprechter, Catal. Sci. Technol. 13, 624 (2023)

    Article  CAS  Google Scholar 

  6. H. Zhang, W. Zhao, F. Meng, Nanomaterials 13, 2398 (2023)

    Article  CAS  Google Scholar 

  7. L. Li, Y. Hu, D. Deng, H. Song, Y. Lv, Anal. Bioanal. Chem. 408, 8831 (2016)

    Article  CAS  Google Scholar 

  8. Y.K. Moon, K.B. Kim, S.-Y. Jeong, J.-H. Lee, Chem. Commun. 58, 5439 (2022)

    Article  CAS  Google Scholar 

  9. Z.P. Wei, M. Arredondo, H.Y. Peng, Z. Zhang, D.L. Guo, G.Z. Xing, Y.F. Li, L.M. Wong, S.J. Wang, N. Valanoor, T. Wu, ACS Nano. 4, 4785 (2010)

    Article  CAS  Google Scholar 

  10. S.H. Choi, Y.C. Kang, ACS Appl. Mater. Interfaces. 6, 2312 (2014)

    Article  CAS  Google Scholar 

  11. C.J. Flynn, E.E. Oh, S.M. McCullough, R.W. Call, C.L. Donley, R. Lopez, J.F. Cahoon, J. Phys. Chem. C 118, 14177 (2014)

    Article  CAS  Google Scholar 

  12. X. Song, L. Gao, S. Mathur, J. Phys. Chem. C 115, 21730 (2011)

    Article  CAS  Google Scholar 

  13. C. Li, P.G. Choi, Y. Masuda, Adv. Sci. 9, 2202442 (2022)

    Article  CAS  Google Scholar 

  14. G. Bai, H. Dai, J. Deng, Y. Liu, W. Qiu, Z. Zhao, X. Li, H. Yang, Chem. Eng. J. 219, 200 (2013)

    Article  CAS  Google Scholar 

  15. G. Bai, H. Dai, J. Deng, Y. Liu, K. Ji, Catal. Commun. 27, 148 (2012)

    Article  CAS  Google Scholar 

  16. S.S. Narender, V.V.S. Varma, C.S. Srikar, J. Ruchitha, P.A. Varma, B.V.S. Praveen, Chem. Eng. Technol. 45, 397 (2022)

    Article  CAS  Google Scholar 

  17. C. Wang, X. Cui, J. Liu, X. Zhou, X. Cheng, P. Sun, X. Hu, X. Li, J. Zheng, G. Lu, ACS Sens. 1, 131 (2016)

    Article  CAS  Google Scholar 

  18. C. Su, L. Zhang, Y. Han, C. Ren, X. Chen, J. Hu, M. Zeng, N. Hu, Y. Su, Z. Zhou, Z. Yang, Sens. Actuators B 296, 126642 (2019)

    Article  CAS  Google Scholar 

  19. Q. Wang, J. Bai, Q. Hu, J. Hao, X. Cheng, J. Li, E. Xie, Y. Wang, X. Pan, Sens. Actuators B 308, 127668 (2020)

    Article  CAS  Google Scholar 

  20. Q. Li, W. Zeng, Y. Li, J. Sensors 1, 1855493 (2022)

    Google Scholar 

  21. L. Wang, Z. Lou, T. Fei, T. Zhang, Sens. Actuators B 161, 178 (2012)

    Article  CAS  Google Scholar 

  22. C. Li, P.G. Choi, K. Kim, Y. Masuda, Sens. Actuators B 367, 132143 (2022)

    Article  CAS  Google Scholar 

  23. G.C.N. Vioto, T.M. Perfecto, C.A. Zito, D.P. Volanti, Mater. Lett. 333, 133641 (2023)

    Article  CAS  Google Scholar 

  24. H.-M. Zhu, W.-B. Qin, Z.-Y. Yuan, C. Han, J. Li, Y.-B. Shen, F.-L. Meng, Chin. J. Anal. Chem. 50, 100034 (2022)

    Article  Google Scholar 

  25. H. Zhu, Z. Yuan, Y. Shen, H. Gao, F. Meng, ACS Sens. 8, 2635 (2023)

    Article  CAS  Google Scholar 

  26. L. Liu, Y. Zhang, G. Wang, S. Li, L. Wang, Y. Han, X. Jiang, A. Wei, Sens. Actuators B 160, 448 (2011)

    Article  CAS  Google Scholar 

  27. H. Gao, L. Zhao, L. Wang, P. Sun, H. Lu, F. Liu, X. Chuai, G. Lu, Sens. Actuators B 255, 3505 (2018)

    Article  CAS  Google Scholar 

  28. T.-H.H. Kim, S.-Y.Y. Jeong, Y.K. Moon, J.-H.H. Lee, Sens. Actuators B 301, 127140 (2019)

    Article  CAS  Google Scholar 

  29. H.-R. Kim, A. Haensch, I.-D. Kim, N. Barsan, U. Weimar, J.-H. Lee, Adv. Funct. Mater. 21, 4456 (2011)

    Article  CAS  Google Scholar 

  30. N. Ma, K. Suematsu, M. Yuasa, T. Kida, K. Shimanoe, ACS Appl. Mater. Interfaces. 7, 5863 (2015)

    Article  CAS  Google Scholar 

  31. Y. Tan, B. Du, C. Liang, X. Guo, H. Zheng, P. Liu, X. Yang, S. Li, B. Jin, J. Sun, Langmuir. 38, 13833 (2022)

    Article  CAS  Google Scholar 

  32. J.-K. Choi, I.-S. Hwang, S.-J. Kim, J.-S. Park, S.-S. Park, U. Jeong, Y.C. Kang, J.-H. Lee, Sens. Actuators B 150, 191 (2010)

    Article  CAS  Google Scholar 

  33. G. Zhan, H.C. Zeng, ACS Catal. 7, 7509 (2017)

    Article  CAS  Google Scholar 

  34. X.-Z. Song, Y.-L. Meng, Z. Tan, L. Qiao, T. Huang, X.-F. Wang, Inorg. Chem. 56, 13646 (2017)

    Article  CAS  Google Scholar 

  35. K. Guo, I. Hussain, G. Jie, Y. Fu, F. Zhang, W. Zhu, J. Environ. Sci. 125, 290 (2023)

    Article  CAS  Google Scholar 

  36. K. Xu, J. Gao, P. Chen, C. Zhan, Y. Yang, Z. Wang, Y. Yang, L. Yang, C. Yuan, Ind. Eng. Chem. Res. 61, 8057 (2022)

    Article  CAS  Google Scholar 

  37. Y. Jo, Y.K. Jo, J.-H. Lee, H.W. Jang, I.-S. Hwang, D.J. Yoo, Adv. Mater. 35, 2206842 (2023)

    Article  CAS  Google Scholar 

  38. S. Joo, I. Muto, N. Hara, J. Electrochem. Soc. 157, J221 (2010)

    Article  CAS  Google Scholar 

  39. I.C. Weber, A.T. Güntner, Sens. Actuators B 356, 131346 (2022)

    Article  CAS  Google Scholar 

  40. G. Cai, P. Yan, L. Zhang, H.-C. Zhou, H.-L. Jiang, Chem. Rev. 121, 12278 (2021)

    Article  CAS  Google Scholar 

  41. H. Pang, B. Guan, W. Sun, Y. Wang, Electrochim. Acta. 213, 351 (2016)

    Article  CAS  Google Scholar 

  42. C.A. Zito, T.M. Perfecto, C.S. Fonseca, D.P. Volanti, New. J. Chem. 42, 8638 (2018)

    Article  CAS  Google Scholar 

  43. L. Thomassen, J. Am. Chem. Soc. 62, 1134 (1939)

    Article  Google Scholar 

  44. S. Uhlenbrock, C. Scharfschwerdt, M. Neumann, G. Illing, H.J. Freund, J. Phys. 4, 7973 (1992)

    CAS  Google Scholar 

  45. M.A. Peck, M.A. Langell, Chem. Mater. 24, 4483 (2012)

    Article  CAS  Google Scholar 

  46. M.C. Biesinger, B.P. Payne, L.W.M. Lau, A. Gerson, R.S.C. Smart, Surf. Interface Anal. 41, 324 (2009)

    Article  CAS  Google Scholar 

  47. M.C. Biesinger, B.P. Payne, A.P. Grosvenor, L.W.M. Lau, A.R. Gerson, R.S.C. Smart, Appl. Surf. Sci. 257, 2717 (2011)

    Article  CAS  Google Scholar 

  48. M. Lenglet, F. Hochu, J. Dürr, M.H. Tuilier, Solid State Commun. 104, 793 (1997)

    Article  CAS  Google Scholar 

  49. F.M.F. de Groot, H. Elnaggar, F. Frati, R. Wang, M.U. Delgado-Jaime, M. van Veenendaal, J. Fernandez-Rodriguez, M.W. Haverkort, R.J. Green, G. van der Laan, Y. Kvashnin, A. Hariki, H. Ikeno, H. Ramanantoanina, C. Daul, B. Delley, M. Odelius, M. Lundberg, O. Kuhn, S.I. Bokarev, E. Shirley, J. Vinson, K. Gilmore, M. Stener, G. Fronzoni, P. Decleva, P. Kruger, M. Retegan, Y. Joly, C. Vorwerk, C. Draxl, J. Rehr, A. Tanaka, J. Electron Spectrosc. Relat. Phenom. 249, 147061 (2021)

    Article  Google Scholar 

  50. I. Preda, M. Abbate, A. Gutiérrez, S. Palacín, A. Vollmer, L. Soriano, J. Electron Spectrosc. Relat. Phenom. 156–158, 111 (2007)

    Article  Google Scholar 

  51. C. Mitterbauer, G. Kothleitner, W. Grogger, H. Zandbergen, B. Freitag, P. Tiemeijer, F. Hofer, Ultramicroscopy. 96, 469 (2003)

    Article  CAS  Google Scholar 

  52. F. Frati, M.O.J.Y. Hunault, F.M.F. de Groot, Chem. Rev. 120, 4056 (2020)

    Article  CAS  Google Scholar 

  53. J. Yang, B. Jiang, X. Wang, C. Wang, Y. Sun, H. Zhang, K. Shimanoe, G. Lu, Sens. Actuators B 366, 131985 (2022)

    Article  CAS  Google Scholar 

  54. X.-T. Yin, J. Li, D. Dastan, W.-D. Zhou, H. Garmestani, F.M. Alamgir, Sens. Actuators B 319, 128330 (2020)

    Article  CAS  Google Scholar 

  55. X. Li, D. Li, J. Xu, H. Jin, D. Jin, X. Peng, B. Hong, J. Li, Y. Yang, H. Ge, X. Wang, Powder Technol. 318, 40 (2017)

    Article  CAS  Google Scholar 

  56. A. Hermawan, A.T. Hanindriyo, K. Hongo, R. Maezono, S. Yin, J. Phys. Chem. C 126, 8037 (2022)

    Article  CAS  Google Scholar 

  57. K. Yamini, B. Renganathan, A.R. Ganesan, T. Prakash, Opt. Fiber Technol. 36, 139 (2017)

    Article  CAS  Google Scholar 

  58. G. George, S. Anandhan, RSC Adv. 4, 62009 (2014)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge the São Paulo Research Foundation (FAPESP) (grants numbers 2019/11058-6, 2020/06421-1, 2018/01258-5, and 2020/05233-7), Coordination for the Improvement of Higher Education Personnel – CAPES (Finance Code 001) and the National Council for Scientific and Technological Development (CNPq) (grant number 311453/2021-0) for the financial support. We extend our appreciation to the LSQA/IBILCE/UNESP for providing the XRD analyses, EMBRAPA for the FESEM and TG facilities, and LNNano/CNPEM for the TEM analysis (proposal 20210578). Additionally, we are grateful to Felipe de Souza Custódio, Thiago José de Almeida Mori, and Tulio Costa Rizuti da Rocha for their valuable support during XPS and XAS analyses at IPE beamline on Sirius, located at LNLS (proposal 20221938).

Author information

Authors and Affiliations

Authors

Contributions

RST methodology, data curation, formal analysis, investigation, writing—original draft. BSS methodology, formal analysis, investigation. OM P methodology, formal analysis, investigation. TMP methodology, formal analysis, investigation. DPV conceptualization, funding acquisition, supervision, and writing—review and editing.

Corresponding author

Correspondence to Diogo P. Volanti.

Ethics declarations

Conflict of interest

The authors declare that they do not have any conflicts of interest.

Ethical approval

This work requires no live subjects (human or animal).

Consent for publication

The manuscript’s authors have reviewed this paper version and endorsed its publication.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 90.9 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Theodoro, R.S., Sá, B.S., Perrone, O.M. et al. Tuning humidity for highly selective detection of methanol and 2-butanone using MOF-derivatives NiO microrods. J Mater Sci: Mater Electron 34, 2232 (2023). https://doi.org/10.1007/s10854-023-11665-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-11665-3

Navigation