Skip to main content
Log in

Properties and modification mechanism of ZnO nanoparticle-modified asphalt

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Zinc oxide (ZnO), as a modifier, can significantly improve some properties of asphalt. In this work, the spherical ZnO nanoparticles were synthesized using a solvothermal method. The ZnO nanoparticle-modified asphalt was prepared by means of a high shear mixer. The effects of the ZnO nanoparticles with different dosages on the permeability and softening point of the asphalt were investigated. The rheological properties of the asphalt with different ZnO dosage unaged and aged were evaluated and analyzed. The results show that the appropriate amount of the ZnO nanoparticles can improve the high-temperature performance of the asphalt, increase the softening point of the asphalt, reduce the penetration value of the asphalt, and enhance the rutting resistance of the asphalt. Compared with the original asphalt, when the amount of ZnO nanoparticles is 8%, the softening point of modified asphalt increases by 12.3% and the penetration value decreases by about 19%. The improvement of the performance of the ZnO nanoparticle-modified asphalt is the result of the synergistic effect of physical and chemical modifications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available in www.springernature.com.

References

  1. U. Lucia, Phys. A 40, 185 (2014)

    Article  Google Scholar 

  2. P. Raji, C. Sanjeeviraja, K. Ramachran, Cryst. Res. Technol. 39(7), 617 (2010)

    Article  Google Scholar 

  3. K. Krnel, Z. Stadler, T. Kosmac, J. Eur. Ceram. Soc. 27(3), 1211 (2007)

    Article  CAS  Google Scholar 

  4. D. An, X. Tong, J. Liu, Superlattices Microstruct. 77, 1 (2015)

    Article  CAS  Google Scholar 

  5. W.J. Liu, J. Zhang, L.J. Wan, L J. Sens. Actuators B 133(2), 664 (2008)

    Article  CAS  Google Scholar 

  6. D.L. Fan, Heat. Treat. Met. 36(2), 125 (2011)

    Google Scholar 

  7. J.G. Wei, X.Y. Wang, W.Q. Li, Y.H. Li, X.R. Zhu, L.P. Zhu, CrystEngComm 23, 4028 (2021)

    Article  CAS  Google Scholar 

  8. L.P. Zhu, H. Lu, D. Hao, L.L. Wang, Z.H. Wu, P. Li, J.H. Ye, ACS Appl. Mater. Interfaces. 9, 38537 (2017)

    Article  CAS  Google Scholar 

  9. L.P. Zhu, N.C. Bing, D.D. Yang, CrystEngComm. 13, 4486 (2011)

    Article  CAS  Google Scholar 

  10. Y. Wu, W. Wu, Q. Chen, Y. Mao, L. Zhu, J. Mater. Sci: Mater. Electron. 34, 767 (2023)

    CAS  Google Scholar 

  11. K. Amir, B. Peyman, Study Civ. Eng. Architecture. 3(5), 34 (2014)

    Google Scholar 

  12. F. Khodary, M.S.A. El-sadek, H.S. El-Sheshtawy, Int. J. Sci. Eng. Res. 6(1), 444 (2015)

    Google Scholar 

  13. D. Liu, A. Yue, L. Chen, J. Changsha Commun. Univ. 4, 016 (2004)

    CAS  Google Scholar 

  14. G. Hamedi, F. Moghadas, N. Oveisi, Road. Mater. Pavement Des. 16(3), 536 (2015)

    Article  CAS  Google Scholar 

  15. X.D. Tang, X.L. Kong, Z.G. He, Mater. Sci. Forum. 68(8), 175 (2011)

    Article  Google Scholar 

  16. F. Xiao, A.N. Amirkhanian, S.N. Amirkhanian, J. Mater. Civ. Eng. 23(4), 423 (2010)

    Article  Google Scholar 

  17. S. Rezaei, M. Khordehbinan, S. Fakhrefatemi, S. Ghanbari, M. Ghanbari, Pet. Sci. Technol. 35(6), 553 (2017)

    Article  CAS  Google Scholar 

  18. G.H. Shafabakhsh, O. Jafari, Ani, Constr. Build. Mater. 98, 692 (2015)

    Article  Google Scholar 

  19. J. Tanzadeh, R. Tanzadeh, H. Nazari, N. Kamvar, Adv. Eng. Forum. 24, 55 (2017)

    Article  Google Scholar 

  20. A. Azarhoosh, F.M. Nejad, A. Khodaii, Eur. J. Environ. Civ. Eng. 22(8), 946 (2016)

    Article  Google Scholar 

  21. H. Yao, Z. You, L. Li, Constr. Build. Mater. 38, 327 (2013)

    Article  CAS  Google Scholar 

  22. N.I.M. Yusoff, A.A.S. Breem, H.N.M. Alattug, A. Hamim, J. Ahmad, Constr. Build. Mater. 72, 139 (2014)

    Article  Google Scholar 

  23. M.E. Abdullah, K.A. Zamhari, M.R. Hainin, E.A. Oluwasola, N.A. Hassan, N.I.M. Yusoff, Constr. Build. Mater. 112, 232 (2016)

    Article  CAS  Google Scholar 

  24. S.N.A. Jeffry, R.P. Jaya, N.A. Hassan, H. Yaacob, J. Mirza, S.H. Drahman, Constr. Build. Mater. 158, 1 (2018)

    Article  CAS  Google Scholar 

  25. L. Yang, J.E. Zhou, J. Mater. Process. Technol. 189(3), 379 (2007)

    Google Scholar 

  26. Y.H. Lin, D.S. Li, X.Y. Hou, J. Am. Ceramic Soc. 31(4), 412 (2010)

    Google Scholar 

  27. N. Qin, Q. Xiang, H. Zhao, J. Zhang, J. Xu, CrystEngComm. 16, 7062 (2014)

    Article  CAS  Google Scholar 

  28. Q.P. Zhu, X. Shen, L. Wang, L. Zhu, L. Wang, G. Liao, Chin. Chem. Lett. 29(08), 3 (2018)

    Google Scholar 

  29. Y. Mao, Y. L, Y. Zou, X. Shen, L.P. Zhu, Ceram. Int. 45(2), 1724 (2019)

    Article  CAS  Google Scholar 

  30. G.H. Hamedi, F.M. Nejad, K. Oveisi, Mater. Struct. 49(4), 1165 (2016)

    Article  CAS  Google Scholar 

  31. G. Hamedi, F. Nejad, K. Oveisi, Mater. Struct. 49(4), 1165 (2016)

    Article  CAS  Google Scholar 

  32. H.L. Zhang, C.Z. Zhu, Mater. Struct. 48(10), 3249 (2015)

    Article  CAS  Google Scholar 

  33. H.L. Zhang, M.M. Su, S.F. Zhao, Y.P. Zhang, Z.P. Zhang, Constr. Build. Mater. 114, 323 (2016)

    Article  CAS  Google Scholar 

  34. Q. Zeng, Q. Liu, P. Liu, C. Chen, J. Kong, Road. Mater. Pavement Des. 21(5), 1426 (2020)

    Article  Google Scholar 

  35. H. Zhang, Y. Gao, G. Guo, B. Zhao, J. Yu, Constr. Build. Mater. 159, 578 (2018)

    Article  CAS  Google Scholar 

  36. Y. Zhan, J. Xie, Y. Wu, Y. Wan, Adv. Civ. Eng. 2020, 3239793 (2020)

    Google Scholar 

  37. X. Xu, H. Guo, X. Wang, M. Zhang, Z. Wang, B. Yang, Constr. Build. Mater. 224, 732 (2019)

    Article  CAS  Google Scholar 

  38. X. Xie, T. Hui, Y. Luo, H. Li, G. Li, Z. Wang, Adv. Mater. Sci. Eng. 2020, 9078731 (2020)

    Google Scholar 

  39. G. Guo, H. Zhang, Int. J. Transp. Sci. Technol. 11, 437 (2022)

    Article  Google Scholar 

  40. Y.Z. Chen, A.J. Chen, C.J. Li, Z. Li, China J. Highw Transp. 30(7), 25 (2017)

    Google Scholar 

  41. H. Chen, H. Liu, R. Luo, Wuhan Ligong Daxue Xuebao. 41(3), 501 (2017)

    Google Scholar 

  42. ASTM, ASTM D5: Standard Test Method for Penetration of Bituminous Materials (American Society for Testings and Materials, West Conshohocken, 2006)

    Google Scholar 

  43. ASTM, ASTM D36: Standard Test Method for Softening Point of Bitumen (Ring and Ball Apparatus) (American Society for Testing and Materials, West Conshohocken, 2012)

    Google Scholar 

  44. ASTM, ASTM D4402: Standard Test Method for Viscosity Determination of Asphalt at Elevated Temperatures Using a Rotational Viscometer (American Society for Testing and Materials, West Conshohocken, 2013)

    Google Scholar 

  45. ASTM, ASTM D2872: Standard Test Method for Effect of Heat and Air on a Moving Film of Asphalt (Rolling Thin-Film Oven Test) (American Society for Testing and Materials, West Conshohocken, 2012)

    Google Scholar 

  46. Asphalt Institute, Performance Graded Asphalt: Binder Specifications and Testing, Superpave Series No 1 (SP-1) (The Asphalt Institute, Lexington, 2003)

    Google Scholar 

  47. K.N.M. Yunus, M.E. Abdullah, M.K. Ahmad, N.H.M. Kamaruddin, H. Tami, MATEC Web of Conf. 250, 02004 (2018)

    Article  CAS  Google Scholar 

  48. J.P. Aguiar-Moya, J. Salazar-Delgado, V. Bonilla-Mora, E. Rodríguez-Castro, F. Leiva-Villacorta, L. Loría-Salazar, Road. Mater. Pavement Des. 16(sup1), 138 (2015)

    Article  Google Scholar 

  49. H. Rajabi, N. Ghaemi, S.S. Madaeni, P. Daraei, B. Astinchap, S. Zinadini, S.H. Razavizadeh, Appl. Surf. Sci. 349, 66 (2015)

    Article  CAS  Google Scholar 

  50. H. Zhang, Z. Chen, G. Xu, C. Shi, Fuel 211, 850 (2018)

    Article  CAS  Google Scholar 

Download references

Funding

The authors are grateful to the National Natural Science Foundation of China (No: 51778096) and Scientific and Technological Research Program of Chongqing Municipal Education Commission (Nos: KJZD-M202301903, KJQN202201908) for financial support.

Author information

Authors and Affiliations

Authors

Contributions

All the authors have given their contributions to the manuscript. QZ performed the experiment and writing original draft; JW contributed to analysis, data processing, and mechanism; ZH contributed to supervision, review and editing.

Corresponding author

Correspondence to Quping Zhu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

The authors have found all the moral standards and will intend to follow them in future.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 24.8 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, Q., Wang, J. & He, Z. Properties and modification mechanism of ZnO nanoparticle-modified asphalt. J Mater Sci: Mater Electron 34, 2212 (2023). https://doi.org/10.1007/s10854-023-11662-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-11662-6

Navigation