Skip to main content
Log in

Effect of 0.5Li2O–0.5K2O–2B2O3 glass additive on optical and magnetic properties of YFeO3 nanomaterials

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The orthorhombic crystal structure of YFeO3 (YFO) is well known for photocatalysis and magneto-optical application, as a result, continued efforts are being made to further improve the physical properties (optical and magnetic) of this material via doping of rare earth (more expensive) elements. In this context, we attempted to improve the physical properties of YFO by adding the 0.5Li2O–0.5K2O–2B2O3 (LKBO) as a glass additive (inexpensive). The X-ray powder diffraction (XRD) studies show that the maximum 0.5 wt% of LKBO glasses was incorporated into YFO without exhibiting any impurity or secondary phase. FWHM of the main intensity XRD peak (hkl = 121) was reduced from 0.173 to 0.145 when LKBO glasses rose from 0 to 1.0 wt%. The existence of each element present in YFOLKBO-0 and YFOLKBO-0.5 samples was confirmed through X-ray photoelectron spectroscopy (XPS). The average particle size of YFO and 0.5 wt% LKBO added YFO samples were found to be ~ 395 and ~ 794 nm respectively, which was observed through scanning electron microscopy (SEM) analysis. The calculated optical band gap was decreased from 2.23 to 2.18 eV with an increase of LKBO content from 0 to 1 wt% in the YFO nanomaterials. The maximum magnetization value of 0.5 wt% LKBO added YFO material reached 4.15 emu/g, ~ 1.2 times higher than pure YFO materials. In conclusion, these findings (0.5 wt% LKBO glasses added into the YFO) bode well for future production of low-cost YFO materials for magnetic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

The authors declare that all the data generated or analyzed during this study are included in this manuscript.

References

  1. N.A. Spaldin, Multiferroics: past, present, and future. MRS Bull. 42, 385–390 (2009). https://doi.org/10.1557/mrs.2017.86

    Article  Google Scholar 

  2. C.W. Nan, M.I. Bichurin, S. Dong, D. Viehland, G. Srinivasan, Multiferroic magnetoelectric composites: historical perspective, status, and future directions. J. Applied Phys. 103, 031101 (2008). https://doi.org/10.1063/1.2836410

    Article  CAS  Google Scholar 

  3. N. Suo, A. Sun, L. Yu et al., Effect of different rare earth (RE = Y3+, Sm3+, La3+, and Yb3+) ions doped on the magnetic properties of Ni–Cu–Co ferrite nanomagnetic materials. J. Mater. Sci. Mater. Electron. 32, 246–264 (2021). https://doi.org/10.1007/s10854-020-04762-0

    Article  CAS  Google Scholar 

  4. G. Jayakumar, A.A. Irudayaraj, A.D. Raj, S.J. Sundaram, K. Kaviyarasu, Electrical and magnetic properties of nanostructured Ni doped CeO2 for optoelectronic applications. J. Phys. Chem. Solids 160, 10369 (2022). https://doi.org/10.1016/j.jpcs.2021.110369

    Article  CAS  Google Scholar 

  5. J. Mao, Y. Sui, X. Zhang, Y. Su, X. Wang, Z. Liu, Y. Wang, R. Zhu, Y. Wang, W. Liu, J. Tang, Temperature- and magnetic-field-induced magnetization reversal in perovskite YFe0.5Cr0.5O3. Appl. Phys. Lett. 98, 192510 (2011). https://doi.org/10.1063/1.3590714

    Article  CAS  Google Scholar 

  6. H. Zahra, M. Rozita, A.D. Elmuez, S.-N. Masoud, EuMnO3/EuMn2O5/MWCNT nanocomposites: insights into synthesis and application as potential materials for development of hydrogen storage capacity. Fuel 351, 128885 (2023). https://doi.org/10.1016/j.fuel.2023.128885

    Article  CAS  Google Scholar 

  7. S.-N. Masoud, G. Davood, D. Fatemeh, Shape selective hydrothermal synthesis of tin sulfide nanoflowers based on nanosheets in the presence of thioglycolic acid. J. Alloys Compd. 492(1–2), 570–575 (2010). https://doi.org/10.1016/j.jallcom.2009.11.183

    Article  CAS  Google Scholar 

  8. M. Rozita, G.-A. Maryam, S.-N. Masoud, Application of ultrasound-aided method for the synthesis of NdVO4 nano-photocatalyst and investigation of eliminate dye in contaminant water. Ultrason. Sonochem. 42, 201–211 (2018). https://doi.org/10.1016/j.ultsonch.2017.11.025

    Article  CAS  Google Scholar 

  9. A. Mahnaz, E. Khalil, S.-N. Masoud, Magnetically retrievable ferrite nanoparticles in the catalysis application. Adv. Coll. Interface Sci. 271, 101982 (2019). https://doi.org/10.1016/j.cis.2019.07.003

    Article  CAS  Google Scholar 

  10. A. Mahnaz, E. Khalil, S.-N. Masoud, Magnetically retrievable ferrite nanoparticles in the catalysis application. Mater. Res. Bull. 48(4), 1660–1667 (2013). https://doi.org/10.1016/j.cis.2019.07.003

    Article  CAS  Google Scholar 

  11. Z.-A. Sahar, B. Mahin, S.-N. Masoud, Enhanced visible-light-driven photocatalytic performance for degradation of organic contaminants using PbWO4 nanostructure fabricated by a new, simple and green sonochemical approach. Ultrason. Sonochem. 72, 105420 (2021). https://doi.org/10.1016/j.ultsonch.2020.105420

    Article  CAS  Google Scholar 

  12. A. Mahnaz, S.-N. Masoud, A. Ahmad, G. Tahereh, Removal of malachite green (a toxic dye) from water by cobalt ferrite silica magnetic nanocomposite: herbal and green sol-gel autocombustion synthesis. Int. J. Hydrogen Energy 42(39), 24846–24860 (2017). https://doi.org/10.1016/j.ijhydene.2017.08.077

    Article  CAS  Google Scholar 

  13. S.-N. Masoud, D. Mahnaz, D. Fatemeh, Pure cubic ZrO2 nanoparticles by thermolysis of a new precursor. Polyhedron 28(14), 3005–3009 (2009). https://doi.org/10.1016/j.poly.2009.06.032

    Article  CAS  Google Scholar 

  14. A. Sobhani-Nasab, S.M. Hosseinpour-Mashkani, M. Salavati-Niasari et al., Synthesis, characterization, and photovoltaic application of NiTiO3 nanostructures via two-step sol–gel method. J. Mater. Sci. Mater. Electron. 26, 5735–5742 (2015). https://doi.org/10.1007/s10854-015-3130-0

    Article  CAS  Google Scholar 

  15. A. Sobhani-Nasab, S.M. Hosseinpour-Mashkani, M. Salavati-Niasari et al., Controlled synthesis of CoTiO3 nanostructures via two-step sol–gel method in the presence of 1,3,5-benzenetricarboxylic acid. J. Clust. Sci. 26, 1305–1318 (2015). https://doi.org/10.1007/s10876-014-0814-1

    Article  CAS  Google Scholar 

  16. A. Sobhani-Nasab, Z. Zahraei, M. Akbari, M. Maddahfar, S.M. Hosseinpour-Mashkani, Synthesis, characterization, and antibacterial activities of ZnLaFe2O4/NiTiO3 nanocomposite. J. Mol. Struct. 1139, 430–435 (2017). https://doi.org/10.1016/j.molstruc.2017.03.069

    Article  CAS  Google Scholar 

  17. R. Bhimireddi, B. Poonraj, K.B.R. Varma, Structural, optical, and piezoelectric response of lead-free Ba0.95Mg0.05Zr0.1Ti0.9O3 Nanocrystalline Powder. J. Am. Ceram. Soc. 99, 896–904 (2016). https://doi.org/10.1111/jace.14018

    Article  CAS  Google Scholar 

  18. L. Dhavala, R. Bhimireddi, V.S. Muthukumar, V.S. Kollipara, K.B.R. Varma, Exceptional dielectric and varistor properties of Sr, Zn and Sn co-doped calcium copper titanate ceramics. RSC Adv. 13, 10476–10487 (2023). https://doi.org/10.1039/D3RA00743J

    Article  CAS  Google Scholar 

  19. N. Singh, J.Y. Rhee, S. Auluck, Electronic and magneto-optical properties of rare-earth orthoferrites RFeO3 (R = Y, Sm, Eu, Gd and Lu). J. Korean Phys. Soc. 53, 806–811 (2008). https://doi.org/10.3938/jkps.53.806

    Article  CAS  Google Scholar 

  20. N.T.K. Chung, N.A. Tien, B.X. Vuong, Optical and magnetic properties of YFeO3 nanoparticles synthesized by a co-precipitation method at high temperature. Chem. Pap. 76, 923–930 (2022). https://doi.org/10.1007/s11696-021-01913-3

    Article  CAS  Google Scholar 

  21. Y. Ma, M. Chen, Y.Q. Lin, Relaxorlike dielectric behavior and weak ferromagnetism in YFeO3 ceramics. J. Appl. Phys. 103, 124111 (2008). https://doi.org/10.1063/1.2947601

    Article  CAS  Google Scholar 

  22. S. Madolappa, B. Ponraj, R. Bhimireddi, K.B.R. Varma, Enhanced magnetic and dielectric properties of Ti-doped YFeO3 ceramics. J. Am. Ceram. Soc. 100, 2641–2650 (2017). https://doi.org/10.1111/jace.14809

    Article  CAS  Google Scholar 

  23. G. King, P.M. Woodward, Cation ordering in perovskites. J. Mater. Chem. 20, 5785–5796 (2010). https://doi.org/10.1039/B926757C

    Article  CAS  Google Scholar 

  24. V.G. Nair, A. Das, V. Subramanian, P.N. Santosh, Magnetic structure and magnetodielectric effect of YFe0.5Cr0.5O3. J. Appl. Phys. 113, 213907 (2013). https://doi.org/10.1063/1.4808459

    Article  CAS  Google Scholar 

  25. X. Yuan, Y. Sun, M. Xu, Structure and magnetic properties of Y1–x LuxFeO3 (0 ≤ x ≤ 1) ceramics. J. Appl. Phys. 111, 053911 (2012). https://doi.org/10.1063/1.3691243

    Article  CAS  Google Scholar 

  26. W. Zhang, C. Fang, W. Yin, Y. Zeng, One-step synthesis of yttrium orthoferrite nanocrystals via sol–gel auto-combustion and their structural and magnetic characteristics. Mater. Chem. Phys. 137, 877 (2013). https://doi.org/10.1016/j.matchemphys.2012.10.029

    Article  CAS  Google Scholar 

  27. Y. Sui, F. Lu, X. Liu et al., A novel hexagonal YFeO3 3D nanomaterial with room temperature ferromagnetic properties prepared by self-assembling method. Res. Mater. 10, 100186 (2021). https://doi.org/10.1016/j.rinma.2021.100186

    Article  CAS  Google Scholar 

  28. P.S.J. Bharadwaj, V.S. Kollipar, Evaluating the structure-property correlation in Y1xNdxFeO3 (0 ≤ x ≤ 0.15) perovskites. Ceram. Int. 47, 30797–30806 (2021). https://doi.org/10.1016/j.ceramint.2021.07.260

    Article  CAS  Google Scholar 

  29. T. Ahmad, I.H. Lone, S.G. Ansari, J. Ahmed, T. Ahamad, Multifunctional properties and applications of yttrium ferrite nanoparticles prepared by citrate precursor route. Mater. Des. 126, 331–338 (2017). https://doi.org/10.1016/j.matdes.2017.04.034

    Article  CAS  Google Scholar 

  30. P.S.J. Bharadwaj, S. Kundu, V.S. Kollipar, K.B.R. Varma, Structural, optical and magnetic properties of Sm3+ doped yttrium orthoferrite (YFeO3) obtained by sol–gel synthesis route. J. Phys.: Condens. Matter. 32, 035810 (2020). https://doi.org/10.1088/1361-648X/ab4845

    Article  CAS  Google Scholar 

  31. D.H.T. Pham, L.T.T. Nguyen, V.O. Mittova et al., Structural, optical and magnetic properties of Sr and Ni co-doped YFeO3 nanoparticles prepared by simple co-precipitation method. J. Mater. Sci. Mater. Electron. 33, 14356–14367 (2022). https://doi.org/10.1007/s10854-022-08360-0

    Article  CAS  Google Scholar 

  32. C. Venkatrao, D.R.S. Reddy, R. Bhimireddi, Optimization of sintering temperature for realizing enhanced magnetic properties of YFeO3 ceramic derived from the sol-gel technique. J. Mater. Sci. Mater. Electron. 33, 20731–20739 (2022). https://doi.org/10.1007/s10854-022-08883-6

    Article  CAS  Google Scholar 

  33. Y. Li, Y. Ma, Z. Wang et al., Morphologically distinctive YFeO3 with near-infrared reflection and ferromagnetic characteristics. J. Mater. Sci. Mater. Electron. 33, 11318–11331 (2022). https://doi.org/10.1007/s10854-022-08105-z

    Article  CAS  Google Scholar 

  34. V.I. Popkov, O.V. Almjasheva, A.S. Semenova, D.G. Kellerman, V.N. Nevedomskiy, V.V. Gusarov, Magnetic properties of YFeO3 nanocrystals obtained by different soft-chemical methods. J. Mater. Sci.: Mater. Electron. 28, 7163–7170 (2017). https://doi.org/10.1007/s10854-017-6676-1

    Article  CAS  Google Scholar 

  35. A.T. Apostolov, I.N. Apostolova, J.M. Wesselinowa, Differences between the multiferroic properties of hexagonal and orthorhombic ion-doped YFeO3 nanoparticles. Int. J. Mod. Phys. B (2023). https://doi.org/10.1142/S0217979223502016

    Article  Google Scholar 

  36. A. Apostolov, I. Apostolova, J. Wesselinowa, Multiferroic, phonon and optical properties of pure and ion-doped YFeO3 nanoparticles. Nanomaterials 11, 2731 (2021). https://doi.org/10.3390/nano11102731

    Article  CAS  Google Scholar 

  37. A.T. Nguyen, H.D. Chau, T.T. Nguyen, V.O. Mittova, T.H. Do, I.Y. Mittova, Structural and magnetic properties of YFe1−xCoxO3 (0.1 ≤ x ≥ 0.5) perovskite nanomaterials synthesized by co-precipitation method. Nanosyst. Phys. Chem. Math. 9, 424–429 (2018). https://doi.org/10.17586/2220-8054-2018-9-3-424-429

    Article  CAS  Google Scholar 

  38. W. Meng, W. Ting, Structural, magnetic and optical properties of Gd and Co Co-Doped YFeO3 nanopowders. Materials 12, 2423 (2019). https://doi.org/10.3390/ma12152423

    Article  CAS  Google Scholar 

  39. J. Lingxian, J. Guojian, W. Dandan, C. Jianbin, Study on the influence of ion doping on the crystal structure and magnetic properties of YFeO3. Mater. Res. Express 7, 066103 (2020). https://doi.org/10.1088/2053-1591/ab9c5f

    Article  Google Scholar 

  40. C. Venkatrao, D.R.S. Reddy, R. Bhimireddi, Optimization of better chelating agent to attain optimal physical properties of YFeO3 nanomaterials obtained via sol–gel technique. J. Mater. Sci. Mater. Electron. 34, 302 (2023). https://doi.org/10.1007/s10854-022-09691-8

    Article  CAS  Google Scholar 

  41. M. Ahmadipour, M. Arjmand, A.Y. Le, S.L. Chiam, Z.A. Ahmad, S.-W. Pung, Effects of multiwall carbon nanotubes on dielectric and mechanical properties of CaCu3Ti4O12 composite. Ceram. Int. 46, 20313–20319 (2020). https://doi.org/10.1016/j.ceramint.2020.05.119

    Article  CAS  Google Scholar 

  42. A. Goktas, Role of simultaneous substitution of Cu2+ and Mn2+ in ZnS thin films: defects-induced enhanced room temperature ferromagnetism and photoluminescence. Physica E 117, 113828 (2020). https://doi.org/10.1016/j.physe.2019.113828

    Article  CAS  Google Scholar 

  43. F. Mikailzade, H. Türkan, F. Önal, M. Zarbali, A. Göktaş, A. Tumbul, Structural and magnetic properties of polycrystalline Zn1−xMnxO films synthesized on glass and p-type Si substrates using sol–gel technique. Appl. Phys. A 127, 408 (2021). https://doi.org/10.1007/s00339-021-04519-4

    Article  CAS  Google Scholar 

  44. M. Wang, T. Wanga, S.H. Song, M. Ravia, R.C. Liu, S.S. Ji, Effect of calcination temperature on structural, magnetic and optical properties of multiferroic YFeO3 nanopowders synthesized by a low temperature solid-state reaction. Ceram. Int. 43, 10270 (2017). https://doi.org/10.1016/j.ceramint.2017.05.056

    Article  CAS  Google Scholar 

  45. S.H. Wemple, Polarization fluctuations and the optical-absorption edge in BaTiO3. Phys. Rev. B 2, 2679–2689 (1970). https://doi.org/10.1103/PhysRevB.2.2679

    Article  Google Scholar 

  46. D. Redfield, W.J. Burke, Optical absorption edge of LiNbO3. J. Appl. Phys. 45, 4566–4571 (1974). https://doi.org/10.1063/1.1663089

    Article  CAS  Google Scholar 

  47. C. Suchomski, C. Reitz, K. Brezesinski et al., Structural, optical, and magnetic properties ofhighly ordered mesoporous MCr2O4 and MCr2−xFexO4 (M = Co, Zn) spinel thin filmswith uniform 15 nm diameter pores and tunable nanocrystalline domain sizes. Chem. Mater. 24, 155–165 (2012). https://doi.org/10.1021/cm2026043

    Article  CAS  Google Scholar 

  48. S.R. Basu, L.W. Martin, Y.H. Chu et al., Photoconductivity in BiFeO3 thin films. Appl. Phys. Lett. 92, 091905 (2008). https://doi.org/10.1063/1.2887908

    Article  CAS  Google Scholar 

  49. M. Ahmadipour, M. Arjmand, M.F. Ain, Z.A. Ahmad, S.-W. Pung, Effect of Ar:N2 flow rate on morphology, optical and electrical properties of CCTO thin films deposited by RF magnetron sputtering. Ceram. Int. 45, 15077–15081 (2019). https://doi.org/10.1016/j.ceramint.2019.04.245

    Article  CAS  Google Scholar 

  50. B.S. Nagrare, S.S. Kekade, B. Thombare, R.V. Reddy, S.I. Patil, Hyperfine interaction, Raman and magnetic study of YFeO3 nanocrystals. Solid State Commun. 280, 32–38 (2018). https://doi.org/10.1016/j.ssc.2018.06.004

    Article  CAS  Google Scholar 

  51. Y. Ma, M. Chen, Y.Q. Lin, Relaxorlike dielectric behavior and weak ferromagnetism in YFeO3 ceramics. J. Appl. Phys. 103, 124111 (2008). https://doi.org/10.1063/1.2947601

    Article  CAS  Google Scholar 

  52. B. Deka, S. Ravi, A. Perumal, D. Pamu, Effect of Mn doping on magnetic and dielectric properties of YFeO3. Ceram. Int. 43, 1323–1334 (2017). https://doi.org/10.1016/j.ceramint.2016.10.087

    Article  CAS  Google Scholar 

  53. L. Wu, J.C. Yu, L. Zhang, X. Wang, S. Li, Selective self-propagating combustion synthesis of hexagonal and orthorhombic nanocrystalline yttrium iron oxide. J. Solid State Chem. 177, 3666–3674 (2004). https://doi.org/10.1016/j.jssc.2004.06.020

    Article  CAS  Google Scholar 

  54. J.H. Jung, M. Matsubara, T. Arima, J.P. He, Y. Kaneko, Y. Tokura, Optical magnetoelectric effect in the polar GaFeO3 ferrimagnet. Phys. Rev. Lett. 93, 037403 (2004). https://doi.org/10.1103/PhysRevLett.93.037403

    Article  CAS  Google Scholar 

  55. P. Kubelka, Errata: new contributions to the optics of intensely light-scattering materials, part I. J. Opt. Soc. Am. 38, 448–457 (1948). https://doi.org/10.1364/JOSA.38.000448

    Article  CAS  Google Scholar 

  56. M. Ahmadipour, C.W. Kian, M.F. Ain, K.V. Rao, Z.A. Ahmad, Effects of deposition temperatures and substrates on microstructure and optical properties of sputtered CCTO thin film. Mater. Lett. 210, 4–7 (2018). https://doi.org/10.1016/j.matlet.2017.08.121

    Article  CAS  Google Scholar 

  57. F.S. Al-Hazmi, A.A. Al-Ghamdi, L.M. Bronstein, L.S. Memesh, F.S. Shokr, M. Hafez, The influence of sintering temperature on the structure, optical and magnetic properties of Yttrium iron oxide YFeO3 prepared via Lα-alanine assisted combustion method. Ceram. Int. 43, 8133–8138 (2017). https://doi.org/10.1016/j.ceramint.2017.03.137

    Article  CAS  Google Scholar 

  58. P.S.J. Bharadwaj, S. Kundu, V.S. Kollipar, K.B.R. Varma, Synergistic effect of trivalent (Gd3+, Sm3+) and highvalent (Ti4+) co-doping on antiferromagnetic YFeO3. RSC Adv. 10, 22183–22195 (2020). https://doi.org/10.1039/D0RA02532A

    Article  CAS  Google Scholar 

  59. M.V. Berezhnaya, O.V. Almyasheva, V.O. Mittova, A.T. Nguen, I.Y. Mittova, Sol–gel synthesis and properties of Y1xBaxFeO3 nanocrystals. Russ. J. Gen. Chem. 88, 626–631 (2018). https://doi.org/10.1134/S1070363218040035

    Article  CAS  Google Scholar 

  60. N.A. Tien, O.V. Almjasheva, I.Y. Mittova, O.V. Stognei, S.A. Soldatenko, Synthesis and magnetic properties of YFeO3 nanocrystals. Inorg. Mater. 45, 1304–1308 (2009). https://doi.org/10.1134/S0020168509110211

    Article  CAS  Google Scholar 

  61. C. Venkatrao, D.R.S. Reddy, K.R. Kandula, R. Bhimireddi, Grain size-dependent structural, optical, dielectric, and magnetic properties of YFeO3 nanomaterials obtained by the sol–gel technique using tartaric acid as a chelating agent. Phys. Status Solidi B 260, 2200272 (2023). https://doi.org/10.1002/pssb.202200272

    Article  CAS  Google Scholar 

  62. Y. Liao, F. Xu, D. Zhang, Z. Li, T. Zhou, X. Wang, L. Jia, H. Zhang, Effect of ZnO–B2O3–SiO2 glass additive on magnetic properties of low-sintering Li0.43Zn0.27Ti0.13Fe2.17O4 ferrites. J. Mater. Sci.: Mater. Electron. 27, 811–817 (2016). https://doi.org/10.1007/s10854-015-3821-6

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors sincerely thank the authorities of Krishna University for providing the essential lab facilities for carrying out this work.

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

SAM: Sample preparation and their structural characterization and original draft preparation. DRSR: Conceptualization, Reviewing, and editing the manuscript.

Corresponding author

Correspondence to Rama Sekhara Reddy Dachuru.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 95 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohammed, S.A., Dachuru, R.S.R. Effect of 0.5Li2O–0.5K2O–2B2O3 glass additive on optical and magnetic properties of YFeO3 nanomaterials. J Mater Sci: Mater Electron 34, 2242 (2023). https://doi.org/10.1007/s10854-023-11653-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-11653-7

Navigation