Skip to main content
Log in

Magnetocaloric effect in PrGd1-xBaxMn2O6 (0.0 ≤ x ≤ 1.0) double perovskite manganite system

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The PrGd1-xBaxMn2O6 (x = 0.0, 0.6, 0.7, 0.8, 0.9, 1.0) double-perovskite manganite samples produced by solid-state reaction method have been investigated in this study. The samples were crystallized in the form of orthorhombic structure with the Pbnm space group confirmed by the Rietveld refinement method. The temperature-dependent magnetization measurements (M(T)) revealed that the samples display a phase transition from ferromagnetic to paramagnetic as temperature increased. The results obtained from these measurements indicate that the Curie temperature values increased from 44 to 187.8 K, respectively, by increasing the Ba concentration from x = 0.0–1.0. The isothermal magnetization curves are achieved by external magnetic field-dependent magnetization measurements (M(H)) and help to calculate the magnetic entropy change (− ΔSM) values, and to find the nature of magnetic phase transition. Maximum magnetic entropy change (\(-\Delta {S}_{M}^{max}\)) values are found as 2.81, 2.76, 2.99, 3.44, 2.77, and 2.14 Jkg−1 K−1 under 5 T magnetic field change for x = 0.0, 0.6, 0.7, 0.8, 0.9, 1.0 samples, respectively. Arrott plots created from the isothermal magnetization curves show that all samples have a second-order magnetic phase transition. Relative cooling power values are determined as 103.41, 264.96, 341.19, 278.36, 224.13, and 164.42 Jkg−1 for x = 0.0, 0.6, 0.7, 0.8, 0.9, 1.0 samples, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

Data will be available on request.

Code availability

Not applicable.

References

  1. S.A. Tassou, Y. Ge, A. Hadawey, D. Marriott, Energy consumption and conservation in food retailing. Appl. Therm. Eng. 31, 147 (2011)

    Article  CAS  Google Scholar 

  2. K.A. Gschneidner Jr., V.K. Pecharsky, A.O. Pecharsky, C.B. Zimm, Recent developments in magnetic refrigeration. Mater. Sci. Forum 315–317, 69 (1999)

    Article  Google Scholar 

  3. A.O. Ayaş, M. Akyol, A. Ekicibil, Phil. Mag. 96, 922 (2016)

    Article  Google Scholar 

  4. K.A. Gschneidner, V.K. Pecharsky, Recent developments in magnetic refrigeration, 209 (1996).

  5. M.-H. Phan, S.-C. Yu, Review of the magnetocaloric effect in manganite materials. J. Magn. Magn. Mater. 308, 325 (2007)

    Article  CAS  Google Scholar 

  6. O. Gutfleisch, M.A. Willard, E. Brück, C.H. Chen, S.G. Sankar, J.P. Liu, Adv. Mater. 23, 821 (2011)

    Article  CAS  Google Scholar 

  7. Y. Zhang, Y. Tian, Z. Zhang, Y. Jia, B. Zhang, M. Jiang, J. Wang, Z. Ren, Magnetic properties and giant cryogenic magnetocaloric effect in B-site ordered antiferromagnetic Gd2MgTiO6 double perovskite oxide. Acta Mater. 226, 117669 (2022)

    Article  CAS  Google Scholar 

  8. K.A. Gschneidner, V.K. Pecharsky, Magnetocaloric Materials. Annu. Rev. Mater. Sci. 30, 387 (2000)

    Article  CAS  Google Scholar 

  9. A.O. Ayaş, S. Kılıç Çetin, M. Akyol, G. Akça, A. Ekicibil, Journal of Molecular Structure, 1200 127120 (2020).

  10. A.O. Ayaş, S.K. Çetin, G. Akça, M. Akyol, A. Ekicibil, Magnetic refrigeration: Current progress in magnetocaloric properties of perovskite manganite materials. Mater. Today Commun. 35, 105988 (2023)

    Article  Google Scholar 

  11. A. Kandemir, G. Akça, S. Kılıç Çetin, A.O. Ayaş, M. Akyol, A. Ekicibil, J. Solid. State. Chem., 324 124086 (2023).

  12. N.R. Ram, M. Prakash, U. Naresh, N.S. Kumar, T.S. Sarmash, T. Subbarao, R.J. Kumar, G.R. Kumar, K.C.B. Naidu, Review on magnetocaloric effect and materials. J. Supercond. Novel Magn. 31, 1971 (2018)

    Article  CAS  Google Scholar 

  13. V. Franco, J.S. Blázquez, J.J. Ipus, J.Y. Law, L.M. Moreno-Ramírez, A. Conde, Magnetocaloric effect: From materials research to refrigeration devices. Prog. Mater. Sci. 93, 112 (2018)

    Article  Google Scholar 

  14. J. Lyubina, Magnetocaloric materials for energy efficient cooling. J. Phys. D Appl. Phys. 50, 53002 (2017)

    Article  Google Scholar 

  15. V.K. Pecharsky, Gschneidner K. A, Phys. Rev. Lett. 78, 4494 (1997)

    Article  CAS  Google Scholar 

  16. Y.K. Kim, Y.W. Cho, Magnetic transition of (MnFe)yP1−xAsx prepared by mechanochemical reaction and post-annealing. J. Alloy. Compd. 394, 19 (2005)

    Article  CAS  Google Scholar 

  17. I.A. Shah, N. Ul Hassan, A. Keremu, S. Riaz, S. Naseem, F. Xu, Z. Ullah, J. Supercond. Novel Magn., 32 659 (2018).

  18. J. Lyubina, R. Schafer, N. Martin, L. Schultz, O. Gutfleisch, Novel design of La(Fe, Si)13 alloys towards high magnetic refrigeration performance. Adv. Mater. 22, 3735 (2010)

    Article  CAS  Google Scholar 

  19. A. Barman, S. Kar-Narayan, D. Mukherjee, Caloric effects in perovskite oxides. Adv. Mater. Interfaces 6, 1900291 (2019)

    Article  Google Scholar 

  20. W. Zhong, C.-T. Au, Y.-W. Du, Review of magnetocaloric effect in perovskite-type oxides. Chin. Phys. B 22, 57501 (2013)

    Article  Google Scholar 

  21. S.K. Srivastava, B. Samantaray, T. Bora, S. Ravi, J. Magn. Magn. Mater. 474, 605 (2019)

    Article  CAS  Google Scholar 

  22. S.K. Srivastava, S. Ravi, J. Phys.: Conden. Matter. 20, 505212 (2008)

    Google Scholar 

  23. S.K. Srivastava, M. Kar, S. Ravi, P.K. Mishra, P.D. Babu, Magnetic properties of electron-doped Y1−xCexMnO3 compounds. J. Magn. Magn. Mater. 320, 2382 (2008)

    Article  CAS  Google Scholar 

  24. J. Krishna Murthy, K. Devi Chandrasekhar, S. Mahana, D. Topwal, A. Venimadhav, (2015) J. Phys. D: Appl. Phys., 48, 355001.

  25. J.Y. Moon, M.K. Kim, Y.J. Choi, N. Lee, Sci. Rep. 7, 16099 (2017)

    Article  CAS  Google Scholar 

  26. J.Y. Moon, M.K. Kim, D.G. Oh, J.H. Kim, H.J. Shin, Y.J. Choi, N. Lee, Anisotropic magnetic properties and giant rotating magnetocaloric effect in double-perovskite Tb2CoMnO6. Phys. Rev. B 98, 174424 (2018)

    Article  CAS  Google Scholar 

  27. H. Rietveld, A profile refinement method for nuclear and magnetic structures. J. Appl. Crystallogr. 2, 65 (1969)

    Article  CAS  Google Scholar 

  28. J. Rodríguez-Carvajal, Recent advances in magnetic structure determination by neutron powder diffraction. Physica B 192, 55 (1993)

    Article  Google Scholar 

  29. M.T. Sebastian, CHAPTER SIX - ABO3 TYPE PEROVSKITES, in Dielectric Materials for Wireless Communication. ed. by M.T. Sebastian (Elsevier, Amsterdam, 2008), p.161

    Chapter  Google Scholar 

  30. N. Soylu Koc, S.P. Altintas, N. Mahamdioua, C. Terzioglu, J. Alloys Compoun, 797, 471 (2019).

  31. G. Venkataiah, V. Prasad, P. Venugopal Reddy, J. Alloys Compounds, 429,1 (2007).

  32. P. Debye, P. Scherrer, Interference on inordinate orientated particles in roentgen light. Physikalische Zeitschrift 17, 277 (1916)

    CAS  Google Scholar 

  33. P. Debye, P. Scherrer, Interference on inordinate orientated particles in x-ray light. III, Physikalische Zeitschrift 18, 291 (1917)

    CAS  Google Scholar 

  34. Y. Tokura, Critical features of colossal magnetoresistive manganites. Rep. Prog. Phys. 69, 797 (2006)

    Article  CAS  Google Scholar 

  35. J.C. Debnath, R. Zeng, J.H. Kim, P. Shamba, D.P. Chen, S.X. Dou, J. Alloys. Compounds 510, 125 (2012)

    Article  CAS  Google Scholar 

  36. S. Kılıç Çetin, M. Acet, A. Ekicibil, J. Alloys Compounds, 727, 1253 (2017).

  37. E. Taşarkuyu, A. Coşkun, A.E. Irmak, S. Aktürk, G. Ünlü, Y. Samancıoğlu, A. Yücel, C. Sarıkürkçü, S. Aksoy, M. Acet, J. Alloys. Compounds 509, 3717 (2011)

    Article  Google Scholar 

  38. J. Yang, W.H. Song, Y.Q. Ma, R.L. Zhang, B.C. Zhao, Z.G. Sheng, G.H. Zheng, J.M. Dai, Y.P. Sun, Phys. Rev. B 70, 144421 (2004)

    Article  Google Scholar 

  39. B. Sudakshina, B. Arun, K.D. Chandrasekhar, H.D. Yang, M. Vasundhara, Phys. B: Cond. Matter. 539, 14 (2018)

    Article  CAS  Google Scholar 

  40. D. Bahadur, R.A. Dunlap, Importance of structural tuning in manganites. Bull. Mater. Sci. 21, 393 (1998)

    Article  CAS  Google Scholar 

  41. B. Arun, V.R. Akshay, G.R. Mutta, C. Venkatesh, M. Vasundhara, Mixed rare earth oxides derived from monazite sand as an inexpensive precursor material for room temperature magnetic refrigeration applications. Mater. Res. Bull. 94, 537 (2017)

    Article  CAS  Google Scholar 

  42. D.S. Razaq, B. Kurniawan, D.R. Munazat, K. Watanabe, H. Tanaka, Crystals 10, 407 (2020)

    Article  CAS  Google Scholar 

  43. D.S. Rana, D.G. Kuberkar, S.K. Malik, Phys. Rev. B 73, 064407 (2006)

    Article  Google Scholar 

  44. M. Bourouina, A. Krichene, N. Chniba Boudjada, W. Boujelben, Ceram. Int. 43,12311 (2017).

  45. S. Mugiraneza, A.M. Hallas, Tutorial: a beginner’s guide to interpreting magnetic susceptibility data with the Curie-Weiss law. Commun. Phys. 5, 95 (2022)

    Article  Google Scholar 

  46. S.K. Srivastava, S. Ravi, Crystal Structure and Magnetic Properties of Cu-Substituted La0.90Ag0.10MnO3 Compounds, Journal of Superconductivity and Novel Magnetism, 32 3995 (2019).

  47. M. Oumezzine, H.B. Sales, A. Selmi, E.K. Hlil, Pr3+ doping at the A-site of La0.67Ba0.33MnO3 nanocrystalline material: assessment of the relationship between structural and physical properties and Bean–Rodbell model simulation of disorder effects, RSC Advances, 9 25627 (2019).

  48. S.K. Srivastava, M. Kar, S. Ravi, Effect of Co doping on the magnetic properties of La0.85Ag0.15(Mn1−yCoy)O3, Journal of Magnetism and Magnetic Materials, 320 e107 (2008).

  49. S.K. Srivastava, M. Kar, S. Ravi, Effect of Al substitution on La0.85Ag0.15MnO3 double exchange ferromagnetic compound, Materials Science and Engineering: B, 147 84 (2008).

  50. A.O. Ayaş, M. Akyol, S.K. Çetin, G. Akça, A. Ekicibil, B. Özçelik, Magnetocaloric Properties of La0.85Ag0.15MnO3 and (La0.80Pr0.20)0.85Ag0.15MnO3 Compounds, Journal of Superconductivity and Novel Magnetism, 28 1649 (2015).

  51. G. Akça, A.O. Ayaş, S.K. Çetin, M. Akyol, A. Ekicibil, Effect of Monovalent Cation Doping on Structural, Magnetic, and Magnetocaloric Properties of Pr0.85A0.15MnO3 (A = Ag and K) Manganites, Journal of Superconductivity and Novel Magnetism, 30 1515 (2017).

  52. Z. Jirák, S. Krupička, V. Nekvasil, E. Pollert, G. Villeneuve, F. Zounová, Structural and magnetization study of Pr1−xCaxMnO3. J. Magn. Magn. Mater. 15–18, 519 (1980)

    Article  Google Scholar 

  53. W. Boujelben, M. Ellouze, A. Cheikh-Rouhou, J. Pierre, Q. Cai, W.B. Yelon, K. Shimizu, C. Dubourdieu, Neutron diffraction, NMR and magneto-transport properties in the Pr0.6Sr0.4MnO3 perovskite manganite, Journal of Alloys and Compounds, 334 1 (2002).

  54. A.O. Ayaş, M. Akyol, S. Kılıç Çetin, M. Kaya, İ. Dinçer, A. Ekicibil, Y. Elerman, Room temperature magnetocaloric effect in Pr1.75Sr1.25Mn2O7 double-layered perovskite manganite system, Philosophical Magazine, 97 671 (2017).

  55. E.K.K. Abdel-Khalek, A.F.F. Salem, E.A.A. Mohamed, Study on the influence of magnetic phase transitions on the magnetocaloric effect in Sm0.7Sr0.3Mn0.95Fe0.05O3 manganite, Journal of Alloys and Compounds, 608 180 (2014).

  56. V.B. Naik, R. Mahendiran, Normal and inverse magnetocaloric effects in ferromagnetic Sm0.6−xLaxSr0.4MnO3, Journal of Applied Physics, 110 53915 (2011).

  57. E.M. Levin, P.M. Shand, Electronic and magnetic phase transitions in (Sm0.65Sr0.35)MnO3 induced by temperature and magnetic field, Journal of Magnetism and Magnetic Materials, 311 675 (2007).

  58. T.-L. Phan, Q.T. Tran, P.Q. Thanh, P.D.H. Yen, T.D. Thanh, S.C. Yu, Critical behavior of La0.7Ca0.3Mn1−xNixO3 manganites exhibiting the crossover of first- and second-order phase transitions, Solid State Communications, 184 40 (2014).

  59. M.K. Srivastava, M.P. Singh, P.K. Siwach, A. Kaur, F.S. Razavi, H.K. Singh, Solid State Commun. 152, 138 (2012)

    Article  CAS  Google Scholar 

  60. P.T. Phong, D.H. Manh, L.C. Hoan, T.V. Ngai, N.X. Phuc, I.-J. Lee, J. Alloys Compounds, 662 557 (2016).

  61. P.T. Phong, N.V. Dang, L.V. Bau, N.M. An, I.-J. Lee, J. Alloys Compounds 698, 451 (2017)

    Article  CAS  Google Scholar 

  62. B.K. Banerjee, On a generalised approach to first and second order magnetic transitions. Phys. Lett. 12, 16 (1964)

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the TUBITAK (The Scientific and Technological Research Council of Turkey) Under Grant Contract no 120M409.

Funding

This article was funded by Türkiye Bilimsel ve Teknolojik Araştırma Kurumu.

Author information

Authors and Affiliations

Authors

Contributions

Gönül Akça: Investigation, Formal analysis (Magnetic part), Writing—Review & Editing. Arda Kandemir: Investigation, Resources, Data Curation, Writing—Original Draft. Ali Osman Ayaş: Investigation, Formal analysis (Structural and magnetic parts), Conceptualization, Writing—Review & Editing. Selda Kılıç Çetin: Investigation, Resources, Formal analysis (Magnetic part), Writing—Review & Editing. Mustafa Akyol: Formal analysis (Magnetic part), Writing—Review & Editing. Ahmet Ekicibil: Project administration, Funding acquisition, Conceptualization, Writing—Review & Editing, Supervision.

Corresponding author

Correspondence to Arda Kandemir.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

Hereby, we declare that the manuscript is our original work and not have been published or under editorial considerations anywhere else. The stated authors of the work have read the content and approved for submission of this manuscript. There is no personal or financial conflict of interest. Further if our article has been accepted, we ensure that we will not publish it anywhere else in any form, in any language without getting the consent of the publisher.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akça, G., Kandemir, A., Ayaş, A.O. et al. Magnetocaloric effect in PrGd1-xBaxMn2O6 (0.0 ≤ x ≤ 1.0) double perovskite manganite system. J Mater Sci: Mater Electron 34, 2223 (2023). https://doi.org/10.1007/s10854-023-11651-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-11651-9

Navigation