Skip to main content
Log in

High-performance triboelectric nanogenerator using ZIF-67/PVDF hybrid film for energy harvesting

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

This research work presents the development of a triboelectric nanogenerator (TENG) devices utilizing a ZIF-67/PVDF hybrid film and FEP as frictional layers. The ZIF-67/PVDF film was prepared using a solution casting method and exhibited high crystallinity as confirmed by XRD. The average particle size of ZIF-67 powder was found ~ 250 nm. Morphological studies by SEM confirms the incorporation of ZIF-67 in PVDF film. Notably, the incorporation of ZIF-67 particles resulted in an enhanced β-phase content in the PVDF compared to pure PVDF. The ZIF-67/PVDF-based TENG exhibited improved electrical performance, this can be attributed to the increased β-phase content in the hybrid film. The TENG device demonstrated remarkable characteristics, including a power density of 3.1 W/m2, an open circuit voltage of 395 V, and a current of 95 µA. The fabricated TENG device was successfully utilized as a power source for low-power devices, highlighting its potential for self-powered applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The data supporting the findings of this study are available within the article. All data generated and analyzed during this study are included in this article.

5. References

  1. N. Srivastava, P. Pandey, Internet of things (IoT): applications, trends, issues and challenges. Mater. Today Proc. (2022). https://doi.org/10.1016/j.matpr.2022.09.490

    Article  Google Scholar 

  2. W. Mrozik, M.A. Rajaeifar, O. Heidrich, P. Christensen, Environmental impacts, pollution sources and pathways of spent Lithium-ion batteries. Energy Environ. Sci. 14(12), 6099–6121 (2021). https://doi.org/10.1039/d1ee00691f

    Article  CAS  Google Scholar 

  3. J. Luo, Z. Wang, L. Xu, A.C. Wang, K. Han, T. Jiang, Q. Lai, Y. Bai, W. Tang, F.R. Fan, Z.L. Wang, Flexible and durable Wood-based Triboelectric Nanogenerators for Self-Powered sensing in Athletic Big Data Analytics. Nat. Commun. 10(1), 1–9 (2019). https://doi.org/10.1038/s41467-019-13166-6

    Article  CAS  Google Scholar 

  4. C. Wu, A.C. Wang, W. Ding, H. Guo, Z.L. Wang, Triboelectric Nanogenerator: A Foundation of the Energy for the New Era. Adv. Energy Mater. 9(1), 1802906 (2019). https://doi.org/10.1002/aenm.201802906

    Article  CAS  Google Scholar 

  5. Y. Wang, Y. Yang, Z.L. Wang, Triboelectric nanogenerators as flexible power sources. npj Flex. Electron. 1(1), 1–10 (2017). https://doi.org/10.1038/s41528-017-0007-8

    Article  CAS  Google Scholar 

  6. F.-R. Fan, Z.-Q. Tian, Z. Lin Wang, Flexible triboelectric generator. Nano Energy. 1(2), 328–334 (2012). https://doi.org/10.1016/j.nanoen.2012.01.004

    Article  CAS  Google Scholar 

  7. P. Supraja, R.R. Kumar, S. Mishra, D. Haranath, P.R. Sankar, K. Prakash, N. Jayarambabu, T.V. Rao, K.U. Kumar, A simple and low-cost triboelectric nanogenerator based on two dimensional ZnO nanosheets and its application in portable electronics. Sens. Actuators A Phys. 335, 113368 (2022). https://doi.org/10.1016/J.SNA.2022.113368

    Article  CAS  Google Scholar 

  8. J. Luo, Z.L. Wang, C. Zhong, Recent progress of triboelectric nanogenerators: from fundamental theory to practical applications. EcoMat 2(4), e12059 (2020). https://doi.org/10.1002/EOM2.12059

    Article  CAS  Google Scholar 

  9. C. Wang, H. Guo, P. Wang, J. Li, Y. Sun, D. Zhang, An Advanced Strategy to Enhance TENG output: reducing Triboelectric Charge Decay. Adv. Mater. 35(17), 2209895 (2023). https://doi.org/10.1002/ADMA.202209895

    Article  CAS  Google Scholar 

  10. S. Potu, N. Madathil, S. Mishra, A. Bora, Y. Sivalingam, A. Babu, M. Velpula, L. Bochu, B. Ketharachapalli, A. Kulandaivel, R.K. Rajaboina, U.K. Khanapuram, H. Divi, P. Kodali, B. Murali, R. Ketavath, Surface-Engineered High-Performance Triboelectric Nanogenerator for Self-Powered Health Monitoring and Electronics. ACS Appl. Eng. Mater. 1(10), 2663–2675 (2023). https://doi.org/10.1021/ACSAENM.3C00416

    Article  CAS  Google Scholar 

  11. H. Liao, J. Na, W. Zhou, S. Hur, P.M. Chien, C. Wang, L. Wang, Y. Yamauchi, Z. Yuan, Enhancing Energy Harvesting Performance and sustainability of cellulose-based triboelectric nanogenerators: strategies for performance enhancement. Nano Energy. 116, 108769 (2023). https://doi.org/10.1016/J.NANOEN.2023.108769

    Article  CAS  Google Scholar 

  12. C. Qi, Z. Yang, J. Zhi, R. Zhang, J. Wen, Y. Qin, Enhancing the Powering Ability of Triboelectric Nanogenerator through Output Signal’s Management Strategies. Nano Res. 16(9), 11783–11800 (2023). https://doi.org/10.1007/S12274-023-5834-4

    Article  Google Scholar 

  13. D. Macário, I. Domingos, N. Carvalho, P. Pinho, H. Alves, Harvesting circuits for triboelectric nanogenerators for wearable applications. iScience 25(4), 103977 (2022). https://doi.org/10.1016/J.ISCI.2022.103977

    Article  Google Scholar 

  14. V.F. Yusuf, N.I. Malek, S.K. Kailasa, Review on metal–Organic Framework classification, synthetic approaches, and influencing factors: applications in Energy, Drug Delivery, and Wastewater Treatment. ACS Omega. 7(49), 44507–44531 (2022). https://doi.org/10.1021/acsomega.2c05310

    Article  CAS  Google Scholar 

  15. M. Eddaoudi, D.F. Sava, J.F. Eubank, K. Adil, V. Guillerm, Zeolite-Like Metal–Organic frameworks (ZMOFs): design, synthesis, and Properties. Chem. Soc. Rev. 44(1), 228–249 (2014). https://doi.org/10.1039/C4CS00230J

    Article  Google Scholar 

  16. V. Stavila, A.A. Talin, M.D. Allendorf, MOF-Based Electronic and Opto-Electronic devices. Chem. Soc. Rev. 43(16), 5994–6010 (2014). https://doi.org/10.1039/C4CS00096J

    Article  CAS  Google Scholar 

  17. R.K. Rajaboina, U.K. Khanapuram, V. Vivekananthan, G. Khandelwal, S. Potu, A. Babu, N. Madathil, M. Velpula, P. Kodali, Crystalline porous material-based nanogenerators: recent progress, applications, challenges, and opportunities. Small (2023). https://doi.org/10.1002/SMLL.202306209

    Article  Google Scholar 

  18. N. Anahidzade, A. Abdolmaleki, M. Dinari, K. Firouz Tadavani, M. Zhiani, Metal-Organic Framework Anchored Sulfonated Poly(Ether Sulfone) as a high temperature Proton Exchange membrane for fuel cells. J. Memb. Sci. 565, 281–292 (2018). https://doi.org/10.1016/J.MEMSCI.2018.08.037

    Article  CAS  Google Scholar 

  19. M. Dinari, F. Jamshidian, Preparation of MIL-101-NH2 MOF/Triazine based covalent organic framework hybrid and its application in acid blue 9 removals. Polymer 215, 123383 (2021). https://doi.org/10.1016/J.POLYMER.2021.123383

    Article  CAS  Google Scholar 

  20. P. Pandey, K. Thapa, G.P. Ojha, M.-K. Seo, K.H. Shin, S.-W. Kim, J.I. Sohn, Metal-Organic frameworks-based Triboelectric Nanogenerator Powered visible light communication system for Wireless Human-Machine interactions. Chem. Eng. J. 452, 139209 (2023). https://doi.org/10.1016/j.cej.2022.139209

    Article  CAS  Google Scholar 

  21. G. Khandelwal, N.P. Maria Joseph Raj, S. Kim, Zeolitic Imidazole Framework: metal–Organic Framework Subfamily members for Triboelectric Nanogenerators. Adv. Funct. Mater. 30(12), 1910162 (2020). https://doi.org/10.1002/adfm.201910162

    Article  CAS  Google Scholar 

  22. Van T. Heest, S.L. Teich-McGoldrick, J.A. Greathouse, M.D. Allendorf, D.S. Sholl, Identification of metal–Organic Framework materials for Adsorption separation of rare gases: Applicability of Ideal Adsorbed Solution Theory (IAST) and effects of Inaccessible Framework regions. J. Phys. Chem. C 116(24), 13183–13195 (2012). https://doi.org/10.1021/jp302808j

    Article  CAS  Google Scholar 

  23. N. Anahidzade, M. Dinari, A. Abdolmaleki, K.F. Tadavani, M. Zhiani, Enhancement of Hydroxide Conduction by Incorporation of Metal–Organic frameworks into a Semi-interpenetrating Network. Energy & Fuels. 33(6), 5749–5760 (2019). https://doi.org/10.1021/acs.energyfuels.9b00650

    Article  CAS  Google Scholar 

  24. S. Barsiwal, A. Babu, U.K. Khanapuram, S. Potu, N. Madathil, R.K. Rajaboina, S. Mishra, H. Divi, P. Kodali, R. Nagapuri, T. Chinthakuntla, ZIF-67-Metal–Organic-Framework-based Triboelectric Nanogenerator for Self-Powered devices. Nanoenergy Adv. 2(4), 291–302 (2022). https://doi.org/10.3390/nanoenergyadv2040015

    Article  Google Scholar 

  25. Y. Wang, D. Lei, L. Wu, R. Ma, H. Ning, N. Hu, A. Lee, Effects of Stretching on Phase Transformation of PVDF and Its Copolymers: A Review. Open Phys. 21(1), 20220255 (2023). https://doi.org/10.1515/PHYS-2022-0255

    Article  Google Scholar 

  26. M.T. Rahman, S.S. Rana, M.A. Zahed, S. Lee, E.S. Yoon, J.Y. Park, Metal-Organic Framework-Derived Nanoporous Carbon Incorporated nanofibers for High-Performance Triboelectric Nanogenerators and Self-Powered sensors. Nano Energy. 94, 106921 (2022). https://doi.org/10.1016/J.NANOEN.2022.106921

    Article  CAS  Google Scholar 

  27. S. Cheon, H. Kang, H. Kim, Y. Son, J.Y. Lee, H.J. Shin, S.W. Kim, J.H. Cho, High-performance Triboelectric Nanogenerators based on Electrospun Polyvinylidene fluoride–silver Nanowire Composite nanofibers. Adv. Funct. Mater. 28(2), 1703778 (2018). https://doi.org/10.1002/ADFM.201703778

    Article  Google Scholar 

  28. H. Yu, T. Huang, M. Lu, M. Mao, Q. Zhang, H. Wang, Enhanced power output of an Electrospun PVDF/MWCNTs-Based Nanogenerator by tuning its Conductivity. Nanotechnology. 24(40), 405401 (2013). https://doi.org/10.1088/0957-4484/24/40/405401

    Article  CAS  Google Scholar 

  29. J. Chen, Z.L. Wang, Reviving Vibration Energy Harvesting and Self-Powered sensing by a Triboelectric Nanogenerator. Joule. 1(3), 480–521 (2017). https://doi.org/10.1016/J.JOULE.2017.09.004

    Article  CAS  Google Scholar 

  30. A. Chen, C. Zhang, G. Zhu, Z. Lin Wang, A. Chen, C. Zhang, G. Zhu, Z.L. Wang, Polymer materials for high-performance Triboelectric Nanogenerators. Adv. Sci. 7(14), 2000186 (2020). https://doi.org/10.1002/ADVS.202000186

    Article  CAS  Google Scholar 

  31. C. Wu, X. Wang, L. Lin, H. Guo, Z.L. Wang, Paper-based triboelectric nanogenerators made of stretchable interlocking kirigami patterns. ACS Nano. 10(4), 4652–4659 (2016). https://doi.org/10.1021/acsnano.6b00949

    Article  CAS  Google Scholar 

  32. M. Navaneeth, S. Potu, A. Babu, R.K. Rajaboina, U.K. K, H. Divi, P. Kodali, Medical Waste X-Ray Film based Triboelectric Nanogenerator for Self-Powered devices, sensors, and Smart buildings. Environ. Science: Adv. 2(6), 848–860 (2023). https://doi.org/10.1039/D3VA00018D

    Article  CAS  Google Scholar 

  33. G. Khandelwal, A. Chandrasekhar, N.P. Maria Joseph Raj, S.J. Kim, Metal–organic framework: a novel material for triboelectric nanogenerator–based self-powered sensors and systems. Adv. Energy Mater. 9(14), 1803581 (2019). https://doi.org/10.1002/aenm.201803581

    Article  CAS  Google Scholar 

  34. G. Khandelwal, N.P. Maria Joseph Raj, S.J. Kim, ZIF-62: a mixed Linker Metal-Organic Framework for Triboelectric Nanogenerators. J. Mater. Chem. A Mater. 8(34), 17817–17825 (2020). https://doi.org/10.1039/d0ta05067a

    Article  CAS  Google Scholar 

  35. S. Hajra, M. Sahu, A.M. Padhan, J. Swain, B.K. Panigrahi, H.G. Kim, S.W. Bang, S. Park, R. Sahu, H.J. Kim, A New Insight into the ZIF-67 based Triboelectric Nanogenerator for Self-Powered Robot object recognition. J. Mater. Chem. C Mater. 9(48), 17319–17330 (2021). https://doi.org/10.1039/d1tc04729a

    Article  CAS  Google Scholar 

  36. S. Hajra, M. Sahu, R. Sahu, A.M. Padhan, P. Alagarsamy, H.G. Kim, H. Lee, S. Oh, Y. Yamauchi, H.J. Kim, Significant effect of synthesis methodologies of metal-organic frameworks upon the additively manufactured dual-mode triboelectric nanogenerator towards self-powered applications. Nano Energy 107253, 98 (2022). https://doi.org/10.1016/j.nanoen.2022.107253

    Article  CAS  Google Scholar 

  37. N. Jayababu, D. Kim, Co/Zn bimetal organic framework elliptical nanosheets on flexible conductive fabric for energy harvesting and environmental monitoring via triboelectricity. Nano Energy 89, 106355 (2021). https://doi.org/10.1016/j.nanoen.2021.106355

    Article  CAS  Google Scholar 

  38. N. Papadopoulos, Q. Li, X. An, X. Qian, Methyl orange-doped polypyrrole promoting growth of ZIF-8 on cellulose fiber with tunable tribopolarity for triboelectric nanogenerator. Polymers (2022). https://doi.org/10.3390/polym14020332

    Article  Google Scholar 

  39. C. Huang, G. Lu, N. Qin, Z. Shao, D. Zhang, C. Soutis, Y.Y. Zhang, L. Mi, H. Hou, Enhancement of output performance of Triboelectric Nanogenerator by Switchable Stimuli in Metal-Organic frameworks for Photocatalysis. ACS Appl. Mater. Interfaces. 14(14), 16424–16434 (2022). https://doi.org/10.1021/acsami.2c01251

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors would like to thank the Department of Physics, NIT Warangal for providing the research facilities.

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

AB: Data curation, Formal analysis, review & editing; KR: Data curation, Formal analysis, review & editing; PS: Data curation, Formal analysis, review & editing; MN: Data curation, Formal analysis, review & editing; KUK: Conceptualization, Supervision, Methodology, Formal analysis, Writing—original draft, Writing—review & editing; RRK: Conceptualization, Project administration, Supervision, Methodology, Formal analysis, Writing—review & editing; KP: Data curation, Formal analysis, Resources; NR: Investigation; Data curation, Resources.

Corresponding authors

Correspondence to K. Uday Kumar or R. Rakesh Kumar.

Ethics declarations

Competing interests

The authors have no relevant financial or non-financial interests to disclose.

Ethical approval

This article does not contain any studies involving humans and animals performed by any of the author.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 90.7 kb)

Supplementary material 2 (MP4 7387.5 kb)

Supplementary material 3 (MP4 5141.8 kb)

Supplementary material 4 (MP4 60201.9 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Babu, A., Ruthvik, K., Supraja, P. et al. High-performance triboelectric nanogenerator using ZIF-67/PVDF hybrid film for energy harvesting. J Mater Sci: Mater Electron 34, 2195 (2023). https://doi.org/10.1007/s10854-023-11644-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-11644-8

Navigation