Skip to main content
Log in

Luminescence properties of CQDs and photocatalytic properties of TiO2/ZnO/CQDs ternary composites

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

High-performance fluorescent carbon quantum dots (CQDs) prepared by hydrothermal method using citric acid and polyethyleneimine as raw materials. TiO2/ZnO/CQDs ternary composites were obtained by compositing different contents of CQDs with TiO2/ZnO. The phase structure, morphology, photocatalytic performance, and photocatalytic mechanism of ternary TiO2/ZnO/CQDs were investigated. The result shows that the CQDs synthesized by the hydrothermal method have good whole dispersibility, spherical shape, and particle size of 3–5 nm. When the hydrothermal time is 4 h and the hydrothermal temperature is 220 °C, the fluorescence luminescence performance of the prepared CQDs is the best. The prepared CQDs were loaded on the surface of TiO2/ZnO to form ternary TiO2/ZnO/CQDs photocatalysts. The results find that no other new phase is produced by the complex, and the TCZ-1 sample (When the amount of CQDs is 1 mL, the prepared ternary composite photocatalyst.) has a uniform grain size, with an average grain size of about 20 nm. CQDs can reduce the band gap bandwidth of TiO2/ZnO, and the polar hydrophilic functional groups of CQDs are displayed in the composite, which improves the photocatalytic performance and stability of TiO2/ZnO. TCZ-1 sample has the best photocatalytic performance, and the photocatalytic degradation rate of methylene blue (MB) solution is 96.7% within 90 min, and after 5 cycles of degradation, it drops to 80.2%, which is improved compared with zinc oxide catalyst.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

The data used to support the findings of this study are included within the article.

References

  1. X.Y. Guo, Z. Wan, S.Y. Yin, W.P. Qin, Chin. Phys B 31, 91–98 (2022). https://doi.org/10.1088/1674-1056/ac7556

    Article  Google Scholar 

  2. X. Li, J.G. Yu, S. Wageh, A. Al-Ghamdi, J. Xie, Small (2016). https://doi.org/10.1002/smll.201600382

    Article  Google Scholar 

  3. L. Buzzetti, G.E.M. Crisenza, P. Melchiorre, Angew Chem. Int. Ed. 58, 3730–3747 (2018). https://doi.org/10.1002/anie.201809984

    Article  CAS  Google Scholar 

  4. H.S. Jarusheh, A. Yusuf, F. Banat, M.A. Haija, G. Palmisano, J. Environ. Chem. Eng. 10, 108204 (2022). https://doi.org/10.1016/j.jece.2022.108204

    Article  CAS  Google Scholar 

  5. S. Pirsa, H. Heidari, Sens. Lett. 15, 19–24 (2017). https://doi.org/10.1166/sl.2017.3750

    Article  Google Scholar 

  6. S. Pirsa, Å. Tağı, M. Rezaei, J. Electron. Mater. 50, 3406–3414 (2021). https://doi.org/10.1007/s11664-021-08855-2

    Article  CAS  Google Scholar 

  7. N. Meydanju, S. Pirsa, J. Farzi, Polym. Test. 106, 107445 (2022). https://doi.org/10.1016/j.polymertesting.2021.107445

    Article  CAS  Google Scholar 

  8. N.N. Bai, X.C. Liu, Z.G. Li, X.Y. Ke, K. Zhang, Q. Wu, J. Sol–Gel Sci. Techn 99, 92–100 (2021)

    Article  CAS  Google Scholar 

  9. J. Li, L. Yan, Y.F. Wang, Y.H. Kang, C. Wang, S.B. Yang, J. Mater. Sci. Mater. Electron. 27, 7834–7838 (2016). https://doi.org/10.1007./s10854-016-4773-1

    Article  CAS  Google Scholar 

  10. W.J. Chen, K.C. Hsu, T.H. Fang, T.H. Chen, M.H. Li, Curr. Appl. Phys. 38, 1–6 (2022). https://doi.org/10.1016/j.cap.2022.03.001

    Article  Google Scholar 

  11. G.K. Upadhyay, J.K. Rajput, T.K. Pathak, V. Kumar, L.P. Purohit, Vacuum. 160, 154–163 (2019). https://doi.org/10.1016/j.vacuum.2018.11.026

    Article  CAS  Google Scholar 

  12. D. Upadhaya, P. Kumar, D. Dhar Purkayastha, J. Mater. Sci: Mater. Electron. 30, 10399–10407 (2019). https://doi.org/10.1007/s10854-019-01381-2

    Article  CAS  Google Scholar 

  13. L. Lin, Y.C. Yang, L. Men, X. Wang, D.N. He, Y.C. Chai, B. Zhao, S. Ghoshroy, Q.W. Tang, Nanoscale. 5, 588–593 (2013). https://doi.org/10.1039/c2nr33109h

    Article  CAS  Google Scholar 

  14. X.J. Wang, Z. Huang, M.Y. Wei, T. Lu, D.D. Nong, J.X. Zhao, X.Y. Gao, L.J. Teng, Thermochimica. Acta. 672, 14–24 (2019). https://doi.org/10.1016/j.tca.2018.12.008

    Article  CAS  Google Scholar 

  15. J.S. Xu, J.H. Qian, J. Zhang, T. Zhang, J. Mater. Sci. Mater. Electron. 32, 21869–21879 (2021). https://doi.org/10.1007/s10854-021-06531-z

    Article  CAS  Google Scholar 

  16. K.M. Omer, B. Al-Hashimi, S. Mohammadi, A. Salimi, Y.M. Salih, A.Q. Hassan, K.H. Hama Aziz, S.J. Mohammad, J. Mater. Sci. 57, 14217–14245 (2022). https://doi.org/10.1007/s10853-022-07531-y

    Article  CAS  Google Scholar 

  17. Y.B. Song, S.J. Zhu, B. Yang, RSC Adv. 4, 27184–27200 (2014). https://doi.org/10.1039/C3RA47994C

    Article  CAS  Google Scholar 

  18. D.L. Zhao, T.S. Chung, Water Res. 147, 43–49 (2018). https://doi.org/10.1016/j.watres.2018.09.040

    Article  CAS  Google Scholar 

  19. S. Borna, R. Emamali Sabzi, S. Pirsa, J. Mater. Sci: Mater. Electron. 32, 10866–10879 (2021). https://doi.org/10.1007/s10854-021-05745-5

    Article  CAS  Google Scholar 

  20. X.Y. Xie, S. Li, K. Qi, Z.W. Wang, Chem. Eng. J. 420, 129705 (2021). https://doi.org/10.1016/j.cej.2021.129705

    Article  CAS  Google Scholar 

  21. M. Alkahtani, S.M. Alenzi, A. Alsolami, N. Alsofyani, A. Alfahd, Y.A. Alzahrani, A. Aljuwayr, M. Abduljawad, Int. J. Mol. Sci. 23, 14441 (2022). https://doi.org/10.3390/ijms232214441

    Article  CAS  Google Scholar 

  22. M.H.M. Facure, R. Schneider, J.B.S. Lima, L.A. Mercante, D.S. Correa, Electrochem. 2, 490–519 (2021). https://doi.org/10.3390/electrochem2030032

    Article  CAS  Google Scholar 

  23. A. Nair, J.T. Haponiuk, S. Thomas, S. Gopi, Biomed. Pharmacother. 132, 110834 (2020). https://doi.org/10.1016/j.biopha.2020.110834

    Article  CAS  Google Scholar 

  24. G.H. Oh, B.S. Kim, Y.J. Song, S.J. Kim, Appl. Surf. Sci. 605, 154690 (2022). https://doi.org/10.1016/j.apsusc.2022.154690

    Article  CAS  Google Scholar 

  25. S. Smagulova, M. Egorova, A. Tomskaya, I.O.P. Conf, Ser. Mater. Sci. Eng. 693, 012031 (2019). https://doi.org/10.1088/1757-899X/693/1/012031

    Article  CAS  Google Scholar 

  26. N.A. Tran, N.T. Hien, N.M. Hoang, H.L.T. Dang, D.Q. Huy, T.V. Quy, N.T. Hanh, N.H. Vu, V.D. Dao, Desalination. 548, 116285 (2022). https://doi.org/10.1016/j.desal.2022.116285

    Article  CAS  Google Scholar 

  27. L.J. Mohammed, K.M. Omer, Nanoscale Res. Lett. 15, 182 (2020). https://doi.org/10.1186/s11671-020-03413-x

    Article  Google Scholar 

  28. K.M. Lee, C.W. Lai, K.S. Ngai, J.C. Juan, Water Res. 88, 428–448 (2016). https://doi.org/10.1016/j.watres.2015.09.045

    Article  CAS  Google Scholar 

  29. K.M. Omer, N.N. Mohammad, S.O. Baban, A.Q. Hassan, J. Photochem. Photobiol A 364, 53–58 (2018). https://doi.org/10.1016/j.jphotochem.2018.05.041

    Article  CAS  Google Scholar 

  30. F.F. Duo, Y.W. Wang, C.M. Fan, X.C. Zhang, Y.F. Wang, J. Alloys Compd. 685, 34–41 (2016). https://doi.org/10.1016/j.jallcom.2016.05.259

    Article  CAS  Google Scholar 

  31. Z. Liang, H.L. Hou, Z. Fang, F.M. Gao, L. Wang, D. Chen, W.Y. Yang, ACS Appl. Mater. Interfaces. 11, 19167–19175 (2019). https://doi.org/10.1021/acsami.9b04059

    Article  CAS  Google Scholar 

  32. J. Zhou, J.C. Chen, J.L. Zheng, B.Y. Yan, Y. Zhou, B.D. Hou, B.Y. Chen, J. Colloid Interface Sci. 529, 396–403 (2018). https://doi.org/10.1016/j.jcis.2018.06.040

    Article  CAS  Google Scholar 

  33. D. Wang, L.L. Liu, Y.W. Wang, C.M. Fan, W. Huang, Chem. Phys. Lett. 747, 137340 (2020). https://doi.org/10.1016/j.cplett.2020.137340

    Article  CAS  Google Scholar 

  34. X. Lin, C. Liu, J.B. Wang, S. Yang, J.Y. Shi, Y.Z. Hong, Sep. Purif. Technol. 226, 117–127 (2019). https://doi.org/10.1016/j.seppur.2019.05.093

    Article  CAS  Google Scholar 

  35. Y.P. Xu, J. Zhang, Y.M. Xuan, J.L. Wang, F.Y. Meng, Sol. Energy. 207, 517–527 (2020). https://doi.org/10.1016/j.solener.2020.06.116

    Article  Google Scholar 

  36. J.L. Zhu, G. Luo, X. Peng, W. Wen, X.H. Zhang, S.F. Wang, J. Hazard. Mater. 407, 124765 (2020). https://doi.org/10.1016/j.jhazmat.2020.124765

    Article  CAS  Google Scholar 

  37. N. Wang, D.Y. Jiang, M. Zhao, Optik. 232, 166549 (2021). https://doi.org/10.1016/j.ijleo.2021.166549

    Article  CAS  Google Scholar 

  38. X.B. Sun, Y. Pan, Y.Y. Song, W. Liu, L.D. Nghiem, Q.L. Wang, Z.Q. Cai, Environ. Sci. Technol. 13, 100219 (2023). https://doi.org/10.1016/j.ese.2022.100219

    Article  CAS  Google Scholar 

  39. S. Patial, A. Sonu, N. Sudhaik, T. Chandel, P. Ahamad, P. Raizada, N. Singh, R. Chaukura, Selvasembian, Appl. Sci. 12, 11286 (2022). https://doi.org/10.3390/app122111286

    Article  CAS  Google Scholar 

  40. J.H. Huang, W.Z. Chen, X. Yu, X.H. Fu, Y. Zhu, Y.M. Zhang, Colloids Surf. A Physicochem Eng. Asp. 597, 124758 (2020). https://doi.org/10.1016/j.colsurfa.2020.124758

    Article  CAS  Google Scholar 

  41. X.Y. Wei, Y.W. Wang, Y. Huang, C.M. Fan, J. Alloys Compd. 802, 467–476 (2019). https://doi.org/10.1016/j.jallcom.2019.06.086

    Article  CAS  Google Scholar 

  42. E.E. Toma, G. Stoian, B. Cojocaru, V. Parvulescu, S.M. Coman, Catalysts. 12, 952 (2022). https://doi.org/10.3390/catal12090952

    Article  CAS  Google Scholar 

  43. N. Syed, J.F. Huang, Y.Q. Feng, Carbon Lett. 32, 81–97 (2021). https://doi.org/10.1007/s42823-021-00282-x

    Article  Google Scholar 

  44. F.X. Zhao, X.Y. Li, M.X. Zuo, Y.S. Liang, P.F. Qin, H. Wang, Z.B. Wu, L. Luo, C. Liu, L.J. Leng, J. Environ. Chem. Eng. 11, 109487 (2023). https://doi.org/10.1016/j.jece.2023.109487

    Article  CAS  Google Scholar 

  45. N.N. Mohammad, K.M. Omer, S. Baban, J. Mater. Sci: Mater. Electron. 30, 11598–11606 (2019). https://doi.org/10.1007/s10854-019-01517-4

    Article  CAS  Google Scholar 

  46. S.A. Idrees, L.A. Jamil, K.M. Omer, RSC Adv. 13, 6779–6792 (2023). https://doi.org/10.1039/D3RA00234A

    Article  CAS  Google Scholar 

  47. S.A. Idrees, L.A. Jamil, K.M. Omer, ACS Omega. 42, 37620–37628 (2022). https://doi.org/10.1021/acsomega.2c04480

    Article  CAS  Google Scholar 

  48. W. Yan, X.C. Liu, J. Synth, Cryst 47, 2035–2043 (2018). https://doi.org/10.16553/j.cnki.issn1000-985x.2018.10.007

    Article  CAS  Google Scholar 

  49. J. Liu, X.L. Liu, H.J. Luo, Y.F. Gao, RSC Adv. 4, 7648–7654 (2014). https://doi.org/10.1039/C3RA47577H

    Article  CAS  Google Scholar 

  50. R. Zha, R. Nadimicherla, X. Guo, J. Mater. Chem. A 3, 6565–6574 (2015). https://doi.org/10.1039/C5TA00764J

    Article  CAS  Google Scholar 

  51. Y. Wei, Y. Liu, H.T. Li, X.D. He, Q.G. Zhang, Z.H. Kang, S.T. Lee, J. Colloid Interface Sci. 358, 146–150 (2011). https://doi.org/10.1016/j.jcis.2011.02.061

    Article  CAS  Google Scholar 

  52. S. Anandan, M. Yoon, J. Photochem, Photobiol. C 4, 5–18 (2003). https://doi.org/10.1016/S1389-5567(03)00002-9

    Article  CAS  Google Scholar 

  53. H. Zhao, M. Zalfani, C.F. Li, J. Liu, Z.Y. Hu, M. Mahdouani, R. Bourguiga, Y. Li, B.L. Su, J. Colloid Interface Sci. 539, 585–597 (2019). https://doi.org/10.1016/j.jcis.2018.12.076

    Article  CAS  Google Scholar 

  54. V.N. Mehta, S. Jha, H. Basu, R.K. Singhal, S.K. Kailasa, Sens. Actuators B Chem. 213, 434–443 (2015). https://doi.org/10.1016/j.snb.2015.02.104

    Article  CAS  Google Scholar 

  55. P. Kumar, S. Dua, R. Kaur, M. Kumarde, G. Bhatt, RSC Adv. 8, 4714–4759 (2022). https://doi.org/10.1039/D1RA08452F

    Article  Google Scholar 

  56. C.H. Nguyen, M.L. Tran, T.T.V. Tran, R.S. Juang, Sep. Purif. Technol. 232, 115962 (2020). https://doi.org/10.1016/j.seppur.2019.115962

    Article  CAS  Google Scholar 

  57. J.H. Shen, Y.H. Zhu, C. Chen, X.L. Yan, C.Z. Li, Chem. Commun. 47, 2580–2582 (2011). https://doi.org/10.1039/C0CC04812G

    Article  CAS  Google Scholar 

  58. S.Y. Lim, S. Wen, Z.Q. Gao, Chem. Soc. Rev. 44, 362–381 (2015). https://doi.org/10.1039/C4CS00269E

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (Grant No. 52272123), the National Key Basic Research and Development Project Subproject (Grant No. 2017YFC0703204), Science and Technology Project of Shaanxi Provincial Market Supervision Administration (Grant No. 2022KY20).

Author information

Authors and Affiliations

Authors

Contributions

JG: experiment, data analysis, manuscript writing; XL: guide the experiment, provide experimental conditions, modify the manuscript; NB: experiment, data arrangement; ZY: modify the manuscript; FW: data arrangement; FG: guide the experiment; PZ: guided the revision of the manuscript; ZW: experimental data collation.

Corresponding authors

Correspondence to Xiangchun Liu or Feng Gao.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical approval

We confirm that the article meets ethical standards.

Additional information

Publisher’s Note

Springer nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guan, J., Liu, X., Bai, N. et al. Luminescence properties of CQDs and photocatalytic properties of TiO2/ZnO/CQDs ternary composites. J Mater Sci: Mater Electron 34, 2169 (2023). https://doi.org/10.1007/s10854-023-11603-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-11603-3

Navigation