Skip to main content
Log in

Pulsed laser deposition of nanostructured CeO2 antireflection coating for silicon solar cell

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Increasing the power conversion efficiency (PCE) of silicon solar cells by improving their junction properties or minimizing light reflection losses remains a major challenge. Extensive studies were carried out in order to develop an effective antireflection coating for monocrystalline solar cells. Here we report on the preparation of a nanostructured cerium oxide thin film by pulsed laser deposition (PLD) as an antireflection coating for silicon solar cell. The structural, optical, and electrical properties of a cerium oxide nanostructure film are investigated as a function of the number of laser pulses. The X-ray diffraction results reveal that the deposited cerium oxide films are crystalline in nature and have a cubic fluorite. The field emission scanning electron microscope investigations show an increase in the film grain size with increasing the number of laser pulses. The carrier concentration of the film decreases and the mobility increases as the number of laser pulses increases. The cerium oxide film deposited on silicon at 900 laser pulses exhibits a minimum optical reflection. The maximum PCE was 19.27% and fill factor of 87% was obtained after the deposition of silicon solar cell with cerium oxide nanostructured film deposited at 1000 laser pulses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

Availability data and materials

The datasets generated and/or analyzed during the current study are available from the corresponding author (Raid A. Ismail) on reasonable request.

References

  1. M. Balestrieri et al., Photon management properties of rare-earth (Nd, Yb, Sm)-doped CeO2 films prepared by pulsed laser deposition. Phys. Chem. Chem. Phys. 18(4), 2527–2534 (2016)

    Article  CAS  Google Scholar 

  2. L. Lu et al., In-situ low-temperature sol-gel growth of nano-cerium oxide ternary composite films for ultraviolet blocking”. Opt. Mater. (Amst). 101, 109724 (2020)

    Article  CAS  Google Scholar 

  3. C.E. Castano, M.J. O’Keefe, W.G. Fahrenholtz, Cerium-based oxide coatings. Curr. Opin. Solid State Mater. Sci. 19(2), 69–76 (2015)

    Article  CAS  Google Scholar 

  4. K.M. Archana, R. Rajagopal, S. Harinipriya, Fabrication of CeO2/CuI thin film with CdO as a buffer–A heterojunction diode. Solid State Sci. 125, 106818 (2022)

    Article  CAS  Google Scholar 

  5. M.S. Kabir, P. Munroe, V. Gonçales, Z. Zhou, Z. Xie, Structure and properties of hydrophobic CeO2−X coatings synthesized by reactive magnetron sputtering for biomedical applications. Surf. Coatings Technol. 349, 667–676 (2018)

    Article  CAS  Google Scholar 

  6. H.-J. Beie, A. Gnörich, Oxygen gas sensors based on CeO2 thick and thin films. Sensors Actuators B Chem. 4(3–4), 393–399 (1991)

    Article  CAS  Google Scholar 

  7. L.J. Romasanta, L. D’alençon, S. Kirchner, C. Pradère, J. Leng, Thin coatings of cerium oxide nanoparticles with anti-reflective properties. Appl. Sci. 9(18), 3886 (2019)

    Article  CAS  Google Scholar 

  8. K. Maniamma, I. Navas, R. Kumar, K. Nissamudeen, D. Gopchandran, D. Biju, Optical properties of nanostructured cerium oxide thin films by pulsed laser deposition. Int Res J Eng Technol. 4, 266–270 (2017)

    Google Scholar 

  9. G. Balakrishnan, P. Sudhakara, A. Wasy, H.S. Ho, K.S. Shin, J.I. Song, Epitaxial growth of cerium oxide thin films by pulsed laser deposition. Thin Solid Films 546, 467–471 (2013)

    Article  CAS  Google Scholar 

  10. R.C. Deus et al., Electrical behavior of cerium dioxide films exposed to different gases atmospheres. Ceram. Int. 42(13), 15023–15029 (2016)

    Article  CAS  Google Scholar 

  11. K. Deori, D. Gupta, B. Saha, S.K. Awasthi, S. Deka, Introducing nanocrystalline CeO2 as heterogeneous environmental friendly catalyst for the aerobic oxidation of para-xylene to terephthalic acid in water. J. Mater. Chem. A 1(24), 7091–7099 (2013)

    Article  CAS  Google Scholar 

  12. M.M. Ali, H.S. Mahdi, A. Parveen, A. Azam, Optical properties of cerium oxide (CeO2) nanoparticles synthesized by hydroxide mediated method. AIP Conf. Proc. 1953(1), 30044 (2018)

    Article  Google Scholar 

  13. N. Ramjeyanthi, M. Alagar, D. Muthuraman, Synthesis, structural and optical behavior of cerium oxide nanoparticles by co-precipitation method. Int. J. Sci. Res. Sci. Technol. 4, 1009–1013 (2018)

    Google Scholar 

  14. W. Zhu et al., Synthesis of cerium dioxide nanoparticles by gas/liquid pulsed discharge plasma in a slug flow reactor. ACS Omega 6(32), 20966–20974 (2021)

    Article  CAS  Google Scholar 

  15. G. Balakrishnan et al., A study of microstructural and optical properties of nanocrystalline ceria thin films prepared by pulsed laser deposition. Thin Solid Films 519(8), 2520–2526 (2011)

    Article  CAS  Google Scholar 

  16. M.T. Yurtcan, Deposition of grid-like single-crystal Ce2O3 thin films on LaAlO3 (100) substrate by pulsed laser deposition. J. Mater. Sci. Mater. Electron. 32, 3854–3862 (2021)

    Article  CAS  Google Scholar 

  17. G. Balakrishnan et al., Microstructure, optical and dielectric properties of cerium oxide thin films prepared by pulsed laser deposition. J. Mater. Sci. Mater. Electron. 30, 16548–16553 (2019)

    Article  CAS  Google Scholar 

  18. X. Zhang et al., Analysis of the electrical characteristics of the Ag/ZnO Schottky barrier diodes on F-doped SnO2 glass substrates by pulsed laser deposition. Microelectron. Eng. 93, 5–9 (2012)

    Article  CAS  Google Scholar 

  19. A. Joseph, A.P. Rillera, M.J.F. Empizo, N. Sarukura, R.V. Sarmago, W.O. Garcia, Low-energy femtosecond pulsed laser deposition of cerium (IV) oxide thin films on silicon substrates. J. Cryst. Growth 574, 126323 (2021)

    Article  Google Scholar 

  20. M. Spence et al., A comparison of different textured and non-textured anti-reflective coatings for planar monolithic silicon-perovskite tandem solar. ACS Appl. Energy Mater. 5, 5974–5982 (2022)

    Article  CAS  Google Scholar 

  21. İ Kanmaz, M. Tomakin, Anti-reflective effect of CeO2 thin films produced by sol-gel method on crystalline silicon solar cells. J. Sol-Gel Sci. Technol. 108(2), 361–367 (2023)

    Article  CAS  Google Scholar 

  22. J. Dong, X. Feng, J. Jia, B. Shi, Y. Wu, B. Cao, Annealing free CeO2 electron transport layer for efficient perovskite solar cells. J. Solid State Chem. 317, 123661 (2023)

    Article  CAS  Google Scholar 

  23. L.E. Ríos-Saldaña, V.D. Compeán-García, H. Moreno-García, A.G. Rodríguez, Improvement of the conversion efficiency of as-deposited Bi2S3/PbS solar cells using a CeO2 buffer layer. Thin Solid Films 670, 93–98 (2019)

    Article  Google Scholar 

  24. R. Verma, S.K. Samdarshi, S. Bojja, S. Paul, B. Choudhury, A novel thermophotocatalyst of mixed-phase cerium oxide (CeO2/Ce2O3) homocomposite nanostructure: role of interface and oxygen vacancies. Sol. Energy Mater. Sol. Cells 141, 414–422 (2015)

    Article  CAS  Google Scholar 

  25. P. Patsalas, S. Logothetidis, L. Sygellou, S. Kennou, Structure-dependent electronic properties of nanocrystalline cerium oxide films. Phys. Rev. B 68(3), 35104 (2003)

    Article  Google Scholar 

  26. S. Fabris, S. de Gironcoli, S. Baroni, G. Vicario, G. Balducci, Taming multiple valency with density functionals: A case study of defective ceria. Phys. Rev. B 71(4), 41102 (2005)

    Article  Google Scholar 

  27. K. Charipar, H. Kim, A. Piqué, N. Charipar, ZnO nanoparticle/graphene hybrid photodetectors via laser fragmentation in liquid. Nanomaterials 10(9), 1648 (2020)

    Article  CAS  Google Scholar 

  28. K. Dey, A.G. Aberle, S. van Eek, S. Venkataraj, Superior optoelectrical properties of magnetron sputter-deposited cerium-doped indium oxide thin films for solar cell applications. Ceram. Int. 47(2), 1798–1806 (2021)

    Article  CAS  Google Scholar 

  29. R.A. Ismail, F.A. Fadhil, Effect of electric field on the properties of bismuth oxide nanoparticles prepared by laser ablation in water. J. Mater. Sci. Mater. Electron. 25, 1435–1440 (2014)

    Article  CAS  Google Scholar 

  30. M.S. Alwazny, R.A. Ismail, E.T. Salim, Optical properties of lithium niobate nanoparticles prepared by laser ablation in different surfactant solutions. J. Appl. Sci. Nanotechnol. 3(1), 42–50 (2023)

    Article  Google Scholar 

  31. M.A. Fakhri, E.T. Salim, U. Hashim, A.W. Abdulwahhab, Z.T. Salim, Annealing temperature effect on structural and morphological properties of nano photonic LiNbO3. J. Mater. Sci. Mater. Electron. 28, 16728–16735 (2017)

    Article  CAS  Google Scholar 

  32. J. Calvache-Muñoz et al., Structural and optical properties of CeO2 nanoparticles synthesized by modified polymer complex method. J. Inorg. Organomet. Polym. Mater. 29, 813–826 (2019)

    Article  Google Scholar 

  33. Y. Goto, K. Takahashi, T. Omata, S. Otsuka-Yao-Matsuo, Synthesis of Y2O3-doped CeO2 nanocrystals and their surface modification. J. Phys: Conf. Ser. 165(1), 12041 (2009)

    Google Scholar 

  34. V. Fernandes et al., Room temperature ferromagnetism in Co-doped CeO2 films on Si (001). Phys. Rev. B 75(12), 121304 (2007)

    Article  Google Scholar 

  35. N. Kainbayev et al., Raman study of nanocrystalline-doped ceria oxide thin films. Coatings 10(5), 432 (2020)

    Article  CAS  Google Scholar 

  36. C. Schilling, A. Hofmann, C. Hess, M.V. Ganduglia-Pirovano, Raman spectra of polycrystalline CeO2: a density functional theory study. J. Phys. Chem. C 121(38), 20834–20849 (2017)

    Article  CAS  Google Scholar 

  37. W.H. Weber, K.C. Hass, J.R. McBride, Raman study of CeO2: Second-order scattering, lattice dynamics, and particle-size effects. Phys. Rev. B 48(1), 178 (1993)

    Article  CAS  Google Scholar 

  38. V.V. Pushkarev, V.I. Kovalchuk, J.L. d’Itri, Probing defect sites on the CeO2 surface with dioxygen. J. Phys. Chem. B 108(17), 5341–5348 (2004)

    Article  CAS  Google Scholar 

  39. B. Choudhury, A. Choudhury, Lattice distortion and corresponding changes in optical properties of CeO2 nanoparticles on Nd doping. Curr. Appl. Phys. 13(1), 217–223 (2013)

    Article  Google Scholar 

  40. E.T. Salim, R.A. Ismail, H.T. Halbos, Deposition geometry effect on structural, morphological and optical properties of Nb2O5 nanostructure prepared by hydrothermal technique. Appl. Phys. A 126(11), 891 (2020)

    Article  CAS  Google Scholar 

  41. R.A. Ismail, A.M. Mousa, S.S. Shaker, Preparation of visible-enhanced PbI2/MgO/Si heterojunction photodetector”. Optik (Stuttg) 202, 163585 (2020)

    Article  CAS  Google Scholar 

  42. H. Asady, E. T. Salim, and R. A. Ismail, “Some critical issues on the structural properties of Nb2O5 nanostructure film deposited by hydrothermal technique,” in AIP Conference Proceedings, 2020, vol. 2213, no. 1.

  43. L. Chaturvedi, S. Howlader, D. Chhikara, P. Singh, S. Bagga, and K. M. K. Srivatsa, “Characteristics of nanocrystalline CeO2 thin films deposited on different substrates at room temperature,” 2017.

  44. R.A. Ismail, K.Z. Yehya, O.A. Abdulrazaq, Preparation and characterization of In2O3 thin films for optoelectronic applications. Surf. Rev. Lett. 12, 515–518 (2005)

    Article  CAS  Google Scholar 

  45. R.A. Ismail, Improved characteristics of sprayed CdO films by rapid thermal annealing. J. Mater. Sci. Mater. Electron. 20, 1219–1224 (2009)

    Article  CAS  Google Scholar 

  46. D.S. Hassan, M. Zayer, Study and Investigation of the Effects of the OTA Technique on the Physical Properties of the ZnO Thin Films Prepared by PLD. J. Appl. Sci. Nanotechnol. 1(4), 32–43 (2021)

    Article  Google Scholar 

  47. R.A. Ismail, N.F. Habubi, M.M. Abbod, Preparation of high-sensitivity In2S3/Si heterojunction photodetector by chemical spray pyrolysis. Opt. Quantum Electron. 48, 1–14 (2016)

    Article  Google Scholar 

  48. R.A. Ismail, K.S. Khashan, A.M. Alwan, Study of the effect of incorporation of CdS nanoparticles on the porous silicon photodetector. SILICON 9, 321–326 (2017)

    Article  CAS  Google Scholar 

  49. R.A. Ismail, D.N. Raouf, D.F. Raouf, High efficiency In~ 2O–3/c-Si heterojunction solar cells produced by rapid thermal oxidation. J. Optoelectron. Adv. Mater. 8(4), 1443 (2006)

    CAS  Google Scholar 

  50. A.J. Addie, R.A. Ismail, M.A. Mohammed, Amorphous carbon nitride dual-function anti-reflection coating for crystalline silicon solar cells. Sci. Rep. 12(1), 1–12 (2022)

    Article  Google Scholar 

  51. R.A. Ismail, “Fabrication and characterization of photodetector based on porous silicon”, e-Journal Surf. Sci. Nanotechnol. 8, 388–391 (2010)

    Article  CAS  Google Scholar 

  52. R.A. Ismail, Characteristics of p-Cu2O/n-Si heterojunction photodiode made by rapid thermal oxidation. J. Semicond. Technol. Sci. 9(1), 51–54 (2009)

    Article  Google Scholar 

  53. R. A. Ismail, “Fabrication and characteristics study of n-Bi2O3/n-Si heterojunction,” J. Semicond. Technol. Sci., vol. 6, no. 2, 2006.

  54. S. T. Kassim, H. A. Hadi, and R. A. Ismail, “Fabrication and characterization of high photosensitivity CuS/porous silicon heterojunction photodetector,” Optik (Stuttg)., vol. 221, p. 165339, 2020.

  55. R.A. Ismail, A.K. Ali, K.I. Hassoon, Preparation of a silicon heterojunction photodetector from colloidal indium oxide nanoparticles. Opt. Laser Technol. 51, 1–4 (2013)

    Article  CAS  Google Scholar 

  56. S.S. Shaker, R.A. Ismail, D.S. Ahmed, High-Responsivity heterojunction photodetector based on Bi2O3-decorated MWCNTs nanostructure grown on silicon via laser ablation in liquid. J. Inorg. Organomet. Polym. Mater. 32(4), 1381–1388 (2022)

    Article  CAS  Google Scholar 

  57. L. Guo et al., Stable and efficient Sb2Se3 solar cells with solution-processed NiOx hole-transport layer. Sol. Energy 218, 525–531 (2021)

    Article  CAS  Google Scholar 

  58. G. Kartopu et al., Enhancement of the photocurrent and efficiency of CdTe solar cells suppressing the front contact reflection using a highly-resistive ZnO buffer layer. Sol. Energy Mater. Sol. Cells 191, 78–82 (2019)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the department of Applied Science – University of Technology for logistic support.

Funding

No fund has been received for this research study.

Author information

Authors and Affiliations

Authors

Contributions

RAI and SAA: conceived of the presented idea. RAI and MFJ supervised the finding of this work. All authors discussed the results and contributed equally to the final manuscript. SAA and RAI: conducted the experiments. MFJ and RAI: analyzed and discussed the output of simulated results. All authors provided critical feedback and helped shape the research, analysis and manuscript.

Corresponding author

Correspondence to Safa A. Abdulrahman.

Ethics declarations

Conflict of interest

The authors have declared that no competing interests exist.

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdulrahman, S.A., Jawad, M.F. & Ismail, R.A. Pulsed laser deposition of nanostructured CeO2 antireflection coating for silicon solar cell. J Mater Sci: Mater Electron 34, 2192 (2023). https://doi.org/10.1007/s10854-023-11601-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-11601-5

Navigation