Skip to main content
Log in

Evaluating the potential of MesoporousTiO2/ NiFe2O4 nano composite integrated on polydimethylsiloxane sponge for degradation of Methyl Orange

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

This investigation presents an easy-to-implement fabrication process of a flexible sponge composite from polydimethylsiloxane (PDMS) decorated with mesoporous titanium dioxide (MTiO2)/nickel ferrite (NiFe2O4) as a novel photocatalyst system. A sacrificial template was used to fabricate a permeable PDMS structure with pores size varied from 10 to 150 μm. A solution containing different concentrations of MTiO2/NiFe2O4 is used to decorate the surface and slits walls of porous PDMS. FTIR analysis indicated that the Ti–O–Si bonds are the dominant interaction between PDMS and MTiO2/NiFe2O4. Furthermore, Ultimate Tensile Strength (UTS), SEM/EDS, HRTEM, diffuse reflectance spectroscopy (DRS), and vibrating sample magnetometer (VSM) analysis were performed to evaluate the PDMS incorporated Nano composite. In order to optimize the photocatalytic properties of PDMS–MTiO2/NiFe2O4 composite, the dispersion of different MTiO2/NiFe2O4 mass ratios in PDMS sponge is examined. The discoloration of contaminated methyl orange (MO) on sponge composite under solar simulated irradiation indicates the fast degradation of MO on PDMS–MTiO2/NiFe2O4 (70:30). The surface morphology, roughness, and wettability evaluation of composites revealed the active surface insertion of nanoparticles. The photocatalytic degradation mechanism was indirectly studied using scavengers to determine the \({\text{OH}}^{ \cdot }\), \({\text{h}}_{{{\text{vb}}}}^{ + }\), \({\text{e}}_{{{\text{cb}}}}^{ - }\), and \({\text{O}}_{2}^{ \cdot - }\) progressive species. The advantages of combining MTiO2/NiFe2O4 Nano catalyst with porous PDMS structure would offer a facile separation of catalyst from contaminant. The recyclability indicates the promising applications of these composites for efficient wastewater treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

The authors confirm that all data are available in the article. The authors confirm that the data supporting the findings of this study are available in the article.

References

  1. E. UN. The Water Convention: 30 Years of Impact and Achievements on the Ground, UN, ECE, (October 2022).

  2. I. Bameri, J. Saffari, S. Baniyaghoob, M.-S. Ekrami-Kakhki, Synthesis of magnetic nano-NiFe2O4 with the assistance of ultrasound and its application for photocatalytic degradation of Titan Yellow: Kinetic and isotherm studies. Colloid Interface Sci. Commun. 48, 100610 (2022)

    Article  CAS  Google Scholar 

  3. S.K. Sharma, R. Sanghi, Advances in water treatment and pollution prevention (Springer Science & Business Media, 2012)

    Book  Google Scholar 

  4. C.R. Holkar, A.J. Jadhav, D.V. Pinjari, N.M. Mahamuni, A.B. Pandit, A critical review on textile wastewater treatments: possible approaches. J. Environ. Manage. 182, 351–366 (2016)

    Article  CAS  Google Scholar 

  5. Z. Lian, C. Wei, B. Gao, X. Yang, Y. Chan, J. Wang, G.Z. Chen, K.S. Koh, Y. Shi, Y. Yan, Synergetic treatment of dye contaminated wastewater using microparticles functionalized with carbon nanotubes/titanium dioxide Nano composites. RSC Adv. 10, 9210–9225 (2020)

    Article  CAS  Google Scholar 

  6. N. Daneshvar, H. Ashassi-Sorkhabi, A. Tizpar, Decolorization of orange II by electrocoagulation method. Sep. Purif. Technol. 31, 153–162 (2003)

    Article  CAS  Google Scholar 

  7. M.M. Motlagh, S. Hassanzadeh-Tabrizi, A. Saffar-Teluri, Sol–gel synthesis of Mn2O3/Al2O3/SiO2 hybrid nanocomposite and application for removal of organic dye. J. Sol-Gel Sci. Technol. 73, 9–13 (2015)

    Article  CAS  Google Scholar 

  8. U.I. Gaya, A.H. Abdullah, Heterogeneous photocatalytic degradation of organic contaminants over titanium dioxide: a review of fundamentals, progress and problems. J. Photochem. Photobiol. C 9, 1–12 (2008)

    Article  CAS  Google Scholar 

  9. P. Padmanabhan, K. Sreekumar, T. Thiyagarajan, R. Satpute, K. Bhanumurthy, P. Sengupta, G. Dey, K. Warrier, Nano-crystalline titanium dioxide formed by reactive plasma synthesis. Vacuum 80, 1252–1255 (2006)

    Article  CAS  Google Scholar 

  10. J.Y. Bottero, J. Rose, M.R. Wiesner, Nanotechnologies: tools for sustainability in a new wave of water treatment processes. Integr. Environ. Assess. Manag. Int. J. 2, 391–395 (2006)

    CAS  Google Scholar 

  11. B. Zhao, C.L. Poh, Insights into environmental bioremediation by microorganisms through functional genomics and proteomics. Proteomics 8, 874–881 (2008)

    Article  CAS  Google Scholar 

  12. M.N. Morshed, N. Bouazizi, N. Behary, J. Guan, V. Nierstrasz, Stabilization of zero valent iron (Fe0) on plasma/dendrimer functionalized polyester fabrics for Fenton-like removal of hazardous water pollutants. Chem. Eng. J. 374, 658–673 (2019)

    Article  CAS  Google Scholar 

  13. A. Azimi-Fouladi, P. Falak, S.A. Hassanzadeh-Tabrizi, The photodegradation of antibiotics on nano cubic spinel ferrites photocatalytic systems: A review. J. Alloys Compd. 961, 171075 (2023)

    Article  CAS  Google Scholar 

  14. S.M. Chaudhari, P.M. Gawal, P.K. Sane, S.M. Sontakke, P.R. Nemade, Solar light-assisted photocatalytic degradation of methylene blue with Mo/TiO2: a comparison with Cr-and Ni-doped TiO2. Res. Chem. Intermed. 44, 3115–3134 (2018)

    Article  CAS  Google Scholar 

  15. K. Siwińska-Stefańska, A. Kubiak, A. Piasecki, J. Goscianska, G. Nowaczyk, S. Jurga, T. Jesionowski, TiO2-ZnO binary oxide systems: comprehensive characterization and tests of photocatalytic activity. Materials 11, 841 (2018)

    Article  Google Scholar 

  16. M. Tahir, S. Tasleem, B. Tahir, Recent development in band engineering of binary semiconductor materials for solar driven photocatalytic hydrogen production. Int. J. Hydrogen Energy 45, 15985–16038 (2020)

    Article  CAS  Google Scholar 

  17. T. Hisatomi, J. Kubota, K. Domen, Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting. Chem. Soc. Rev. 43, 7520–7535 (2014)

    Article  CAS  Google Scholar 

  18. A.V. Abega, H.M. Ngomo, I. Nongwe, H.E. Mukaya, P.-M.A.K. Sone, X.Y. Mbianda, Easy and convenient synthesis of CNT/TiO2 nanohybrid by in-surface oxidation of Ti3+ ions and application in the photocatalytic degradation of organic contaminants in water. Synth. Met. 251, 1–14 (2019)

    Article  CAS  Google Scholar 

  19. V. Rodríguez, R. Camarillo, F. Martínez, C. Jiménez, J. Rincón, CO2 photocatalytic reduction with CNT/TiO2 based nanocomposites prepared by high-pressure technology. J. Supercrit. Fluids 163, 104876 (2020)

    Article  Google Scholar 

  20. N. Bouazza, M. Ouzzine, M. Lillo-Ródenas, D. Eder, A. Linares-Solano, TiO2 nanotubes and CNT–TiO2 hybrid materials for the photocatalytic oxidation of propene at low concentration. Appl. Catal. B 92, 377–383 (2009)

    Article  CAS  Google Scholar 

  21. Y. Liu, L. Tian, X. Tan, X. Li, X. Chen, Synthesis, properties, and applications of black titanium dioxide nanomaterials. Science Bulletin 62, 431–441 (2017)

    Article  CAS  Google Scholar 

  22. K. Nakata, A. Fujishima, TiO2 photocatalysis: design and applications. J. Photochem. Photobiol., C 13, 169–189 (2012)

    Article  CAS  Google Scholar 

  23. J. Schneider, M. Matsuoka, M. Takeuchi, J. Zhang, Y. Horiuchi, M. Anpo, D.W. Bahnemann, Understanding TiO2 photocatalysis: mechanisms and materials. Chem. Rev. 114, 9919–9986 (2014)

    Article  CAS  Google Scholar 

  24. S.Z. Islam, S. Nagpure, D.Y. Kim, S.E. Rankin, Synthesis and catalytic applications of non-metal doped mesoporous titania. Inorganics 5, 15 (2017)

    Article  Google Scholar 

  25. C. Van Tran, D.D. La, P.N.T. Hoai, H.D. Ninh, P.N.T. Hong, T.H.T. Vu, A.K. Nadda, X.C. Nguyen, D.D. Nguyen, H.H. Ngo, New TiO2-doped Cu–Mg spinel-ferrite-based photocatalyst for degrading highly toxic rhodamine B dye in wastewater. J. Hazard. Mater. 420, 126636 (2021)

    Article  CAS  Google Scholar 

  26. M. Sohail, H. Xue, Q. Jiao, H. Li, K. Khan, S. Wang, C. Feng, Y. Zhao, Synthesis of well-dispersed TiO2/CNTs@ CoFe2O4 nanocomposites and their photocatalytic properties. Mater. Res. Bull. 101, 83–89 (2018)

    Article  CAS  Google Scholar 

  27. F. Parast, M. Montazeri-Pour, M. Rajabi, F. Bavarsiha, Comparison of the structural and photo-catalytic properties of nanostructured Fe3O4/TiO2 core-shell composites synthesized by ultrasonic and Stöber methods. Sci. Sinter. 52, 415–432 (2020)

    Article  CAS  Google Scholar 

  28. S. Rana, R. Srivastava, M. Sorensson, R. Misra, Synthesis and characterization of nanoparticles with magnetic core and photocatalytic shell: anatase TiO2–NiFe2O4 system. Mater. Sci. Eng. B 119, 144–151 (2005)

    Article  Google Scholar 

  29. E. Bárdos, G. Kovács, T. Gyulavári, K. Németh, E. Kecsenovity, P. Berki, L. Baia, Z. Pap, K. Hernádi, Novel synthesis approaches for WO3-TiO2/MWCNT composite photocatalysts-problematic issues of photoactivity enhancement factors. Catal. Today 300, 28–38 (2018)

    Article  Google Scholar 

  30. A.Z. Saravani, M. Nadimi, M.A. Aroon, A.E. Pirbazari, Magnetic TiO2/NiFe2O4/reduced graphene oxide nanocomposite as a recyclable photocatalyst for photocatalytic removal of methylene blue under visible light. J. Alloy. Compd. 803, 291–306 (2019)

    Article  Google Scholar 

  31. D. Zhao, C.-F. Yang, Recent advances in the TiO2/CdS nanocomposite used for photocatalytic hydrogen production and quantum-dot-sensitized solar cells. Renew. Sustain. Energy Rev. 54, 1048–1059 (2016)

    Article  CAS  Google Scholar 

  32. H. Yu, X. Shen, W. Tan, M. Zhang, J. Lv, L. Yang, J. Zhong, G. He, Z. Sun, Low temperature strategy for the synthesis of Ta3N5 and electrochemical deposition of Ag3PO4 to modify TiO2 as an advanced photoelectrocatalyst for oxygen evolution reactions. Electrochim. Acta 430, 140862 (2022)

    Article  CAS  Google Scholar 

  33. W. Al Zoubi, A.A.S. Al-Hamdani, B. Sunghun, Y.G. Ko, A review on TiO2-based composites for superior photocatalytic activity. Rev. Inorg. Chem. 41, 213–222 (2021)

    Article  CAS  Google Scholar 

  34. R.B. Rajput, S.N. Jamble, R.B. Kale, A review on TiO2/SnO2 heterostructures as a photocatalyst for the degradation of dyes and organic pollutants. J. Environ. Manage. 307, 114533 (2022)

    Article  CAS  Google Scholar 

  35. M. Radoičić, Z. Šaponjić, I.A. Janković, G. Ćirić-Marjanović, S.P. Ahrenkiel, M. Čomor, Improvements to the photocatalytic efficiency of polyaniline modified TiO2 nanoparticles. Appl. Catal. B 136, 133–139 (2013)

    Article  Google Scholar 

  36. V. Likodimos, C. Han, M. Pelaez, A.G. Kontos, G. Liu, D. Zhu, S. Liao, A.A. de la Cruz, K. O’Shea, P.S. Dunlop, Anion-doped TiO2 nanocatalysts for water purification under visible light. Ind. Eng. Chem. Res. 52, 13957–13964 (2013)

    Article  CAS  Google Scholar 

  37. N. Arumugham, A. Mariappan, J. Eswaran, S. Daniel, R. Kanthapazham, P. Kathirvel, Nickel ferrite-based composites and its photocatalytic application–a review. J. Hazard. Mater. Adv. 8, 100156 (2022)

    Article  CAS  Google Scholar 

  38. A. Azimi-Fouladi, S. Hassanzadeh-Tabrizi, A. Saffar-Teluri, Sol-gel synthesis and characterization of TiO2-CdO-Ag nanocomposite with superior photocatalytic efficiency. Ceram. Int. 44, 4292–4297 (2018)

    Article  CAS  Google Scholar 

  39. A. Yaghoot-Nezhad, E. Saebnoori, I. Danaee, S. Elahi, N.B. Panah, M.R. Khosravi-Nikou, Evaluation of the oxidative degradation of aromatic dyes by synthesized nano ferrate (VI) as a simple and effective treatment method. J. Water Process Eng. 49, 103017 (2022)

    Article  Google Scholar 

  40. M. Ismael, Ferrites as solar photocatalytic materials and their activities in solar energy conversion and environmental protection: a review. Sol. Energy Mater. Sol. Cells 219, 110786 (2021)

    Article  CAS  Google Scholar 

  41. D.S. Aherrao, C. Singh, A. Srivastava, Review of ferrite-based microwave-absorbing materials: Origin, synthesis, morphological effects, dielectric/magnetic properties, composites, absorption mechanisms, and optimization. J. Appl. Phys. 132, 240701 (2022)

    Article  CAS  Google Scholar 

  42. A. Šutka, K.A. Gross, Spinel ferrite oxide semiconductor gas sensors. Sens. Actuators B Chem. 222, 95–105 (2016)

    Article  Google Scholar 

  43. R. Sirach, P.N. Dave, Thermal and bisphenol-A adsorption properties of a zinc ferrite/β-cyclodextrin polymer nanocomposite. RSC Adv. 13, 21991–22006 (2023)

    Article  CAS  Google Scholar 

  44. R. Sirach, P.N. Dave, β-Cyclodextrin polymer/zinc ferrite nanocomposite: Synthesis, characterization, and adsorption application for the removal of malachite green and Congo red. J. Hazard. Mater. Adv. 10, 100300 (2023)

    Article  CAS  Google Scholar 

  45. S. Hassanzadeh-Tabrizi, Synthesis of NiFe2O4/Ag nanoparticles immobilized on mesoporous g-C3N4 sheets and application for degradation of antibiotics. J. Photochem. Photobiol. A 418, 113398 (2021)

    Article  CAS  Google Scholar 

  46. M. Skocaj, M. Filipic, J. Petkovic, S. Novak, Titanium dioxide in our everyday life; is it safe? Radiol. Oncol. 45, 227–247 (2011)

    Article  CAS  Google Scholar 

  47. P. Pichat, A brief survey of the potential health risks of TiO2 particles and TiO2-containing photocatalytic or non-photocatalytic materials. J. Adv. Oxid. Technol. 13, 238–246 (2010)

    CAS  Google Scholar 

  48. M.A. Zoroddu, S. Medici, A. Ledda, V.M. Nurchi, J.I. Lachowicz, M. Peana, Toxicity of nanoparticles. Curr. Med. Chem. 21, 3837–3853 (2014)

    Article  CAS  Google Scholar 

  49. S. Matsuzawa, C. Maneerat, Y. Hayata, T. Hirakawa, N. Negishi, T. Sano, Immobilization of TiO2 nanoparticles on polymeric substrates by using electrostatic interaction in the aqueous phase. Appl. Catal. B 83, 39–45 (2008)

    Article  CAS  Google Scholar 

  50. K. Li, Y. de Rancourt, X. de Mimérand, J. Jin, J.G. Yi, Metal oxide (ZnO and TiO2) and Fe-based metal–organic-framework nanoparticles on 3D-printed fractal polymer surfaces for photocatalytic degradation of organic pollutants. ACS Appl. Nano Mater. 3, 2830–2845 (2020)

    Article  CAS  Google Scholar 

  51. D.M. EL-Mekkawi, N.A. Abdelwahab, W.A. Mohamed, N.A. Taha, M. Abdel-Mottaleb, Solar photocatalytic treatment of industrial wastewater utilizing recycled polymeric disposals as TiO2 supports. J. Clean. Prod. 249, 119430 (2020)

    Article  Google Scholar 

  52. A. De Mel, B.G. Cousins, A.M. Seifalian, Surface modification of biomaterials: a quest for blood compatibility. Int. J. Biomater. 2012, 707863 (2012)

    Google Scholar 

  53. C.R. Crick, J.C. Bear, A. Kafizas, I.P. Parkin, Superhydrophobic photocatalytic surfaces through direct incorporation of titania nanoparticles into a polymer matrix by aerosol assisted chemical vapor deposition. Adv. Mater. 24, 3505–3508 (2012)

    Article  CAS  Google Scholar 

  54. C. Kapridaki, L. Pinho, M.J. Mosquera, P. Maravelaki-Kalaitzaki, Producing photoactive, transparent and hydrophobic SiO2-crystalline TiO2 nanocomposites at ambient conditions with application as self-cleaning coatings. Appl. Catal. B 156, 416–427 (2014)

    Article  Google Scholar 

  55. Y. Kameya, H. Yabe, Optical and superhydrophilic characteristics of TiO2 coating with subwavelength surface structure consisting of spherical nanoparticle aggregates. Coatings 9, 547 (2019)

    Article  CAS  Google Scholar 

  56. T. Baëtens, S. Arscott, Planarization and edge bead reduction of spin-coated polydimethylsiloxane. J. Micromech. Microeng. 29, 115005 (2019)

    Article  Google Scholar 

  57. H. Montazerian, M. Mohamed, M.M. Montazeri, S. Kheiri, A. Milani, K. Kim, M. Hoorfar, Permeability and mechanical properties of gradient porous PDMS scaffolds fabricated by 3D-printed sacrificial templates designed with minimal surfaces. Acta Biomater. 96, 149–160 (2019)

    Article  CAS  Google Scholar 

  58. S.-J. Choi, T.-H. Kwon, H. Im, D.-I. Moon, D.J. Baek, M.-L. Seol, J.P. Duarte, Y.-K. Choi, A polydimethylsiloxane (PDMS) sponge for the selective absorption of oil from water. ACS Appl. Mater. Interfaces 3, 4552–4556 (2011)

    Article  CAS  Google Scholar 

  59. Z. Zhang, T. Wang, S. Chen, C. Lv, X. Zhuang, S. Wang, Fabrication of antibacterial Janus bandages with high wound healing performances by facile single-side electrospray PDMS coating. Surf. Interfaces 34, 102392 (2022)

    Article  CAS  Google Scholar 

  60. S.-S.D. Carter, A.-R. Atif, S. Kadekar, I. Lanekoff, H. Engqvist, O.P. Varghese, M. Tenje, G. Mestres, PDMS leaching and its implications for on-chip studies focusing on bone regeneration applications. Organs-on-a-Chip 2, 100004 (2020)

    Article  Google Scholar 

  61. M. Barshutina, S. Kirichenko, V. Wodolajsky, A. Lopachev, S. Barshutin, O. Gorsky, K. Deriabin, A. Sufianov, D. Bulgin, R. Islamova, PDMS-CNT composite for soft bioelectronic neuronal implants. Compos. B Eng. 247, 110286 (2022)

    Article  CAS  Google Scholar 

  62. S. Barthwal, S. Barthwal, B. Singh, N.B. Singh, Multifunctional and fluorine-free superhydrophobic composite coating based on PDMS modified MWCNTs/ZnO with self-cleaning, oil-water separation, and flame retardant properties. Colloids Surf. A 597, 124776 (2020)

    Article  CAS  Google Scholar 

  63. M. Liu, J. Sun, Q. Chen, Influences of heating temperature on mechanical properties of polydimethylsiloxane. Sens. Actuators A 151, 42–45 (2009)

    Article  CAS  Google Scholar 

  64. M. Tavares, A.S. Santos, I.M.G.D. Santos, M.R.S. Silva, M. Bomio, E. Longo, C.A. Paskocimas, F.V.D. Motta, TiO2/PDMS nanocomposites for use on self-cleaning surfaces. Surf. Coat. Technol. 239, 16–19 (2014)

    Article  CAS  Google Scholar 

  65. R. Hickman, E. Walker, S. Chowdhury, TiO2-PDMS composite sponge for adsorption and solar mediated photodegradation of dye pollutants. J. Water Process Eng. 24, 74–82 (2018)

    Article  Google Scholar 

  66. M.M. Baig, E. Pervaiz, M.J. Afzal, Catalytic activity and kinetic studies of Core@ Shell nanostructure NiFe2O4@ TiO2 for photocatalytic degradation of methyl orange dye. J. Chem. Soc. Pak. 42, 531 (2020)

    CAS  Google Scholar 

  67. M. Masoud, A. Nourbakhsh, S.A. Hassanzadeh-Tabrizi, Influence of modified CNT-Ag nanocomposite addition on photocatalytic degradation of methyl orange by mesoporous TiO2. Inorg. Nano-Metal Chem. 47, 1168–1174 (2017)

    Article  CAS  Google Scholar 

  68. S. Hassanzadeh-Tabrizi, Low temperature synthesis and luminescence properties of YAG: Eu nanopowders prepared by modified sol-gel method. Trans. Nonferr. Metals Soc. China 21, 2443–2447 (2011)

    Article  CAS  Google Scholar 

  69. J. Al Boukhari, A. Khalaf, R. Awad, Structural analysis and dielectric investigations of pure and rare earth elements (Y and Gd) doped NiO nanoparticles. J. Alloy. Compd. 820, 153381 (2020)

    Article  CAS  Google Scholar 

  70. H.M. Chenari, C. Seibel, D. Hauschild, F. Reinert, H. Abdollahian, Titanium dioxide nanoparticles: synthesis, X-ray line analysis and chemical composition study. Mater. Res. 19, 1319–1323 (2016)

    Article  CAS  Google Scholar 

  71. B. Manikandan, T. Endo, S. Kaneko, K. Murali, R. John, Properties of sol gel synthesized ZnO nanoparticles. J. Mater. Sci. Mater. Electron. 29, 9474–9485 (2018)

    Article  CAS  Google Scholar 

  72. M. Que, W. Chen, P. Chen, J. Liu, X. Yin, B. Gao, W. Que, Effects of Zn2+ ion doping on hybrid perovskite crystallization and photovoltaic performance of solar cells. Chem. Phys. 517, 80–84 (2019)

    Article  CAS  Google Scholar 

  73. O. Kaygili, I. Ercan, T. Ates, S. Keser, C. Orek, B. Gunduz, T. Seckin, N. Bulut, L. Bañares, An experimental and theoretical investigation of the structure of synthesized ZnO powder. Chem. Phys. 513, 273–279 (2018)

    Article  CAS  Google Scholar 

  74. E. Muniz, M. Góes, J. Silva, J.A. Varela, E. Joanni, R. Parra, P.R. Bueno, Synthesis and characterization of mesoporous TiO2 nanostructured films prepared by a modified sol–gel method for application in dye solar cells. Ceram. Int. 37, 1017–1024 (2011)

    Article  CAS  Google Scholar 

  75. E. Ataeivarjovi, Z. Tang, J. Chen, Z. Zhao, G. Dong, Enhancement of CO2 desorption from a novel absorbent (dimethyl carbonate) by using a PDMS/TiO2 pervaporation membrane. ACS Sustain. Chem. Eng. 7, 12125–12137 (2019)

    CAS  Google Scholar 

  76. P. Sivakumar, R. Ramesh, A. Ramanand, S. Ponnusamy, C. Muthamizhchelvan, Preparation of sheet like polycrystalline NiFe2O4 nanostructure with PVA matrices and their properties. Mater. Lett. 65, 1438–1440 (2011)

    Article  CAS  Google Scholar 

  77. S. Wahyuningsih, R.E. Cahyono, F.N. Aini, Preparation titanium dioxide combined hydrophobic polymer with photocatalytic self-cleaning properties. Bull. Chem. React. Eng. Catal. 15, 874–884 (2020)

    Article  CAS  Google Scholar 

  78. N. Basiron, S. Sreekantan, K.A. Saharudin, Z.A. Ahmad, V. Kumaravel, Improved adhesion of nonfluorinated ZnO nanotriangle superhydrophobic layer on glass surface by spray-coating method. J. Nanomater. 2018, 1–11 (2018)

    Article  Google Scholar 

  79. N. Shardt, J.A. Elliott, Gibbsian thermodynamics of wenzel wetting (was wenzel wrong? revisited). Langmuir 36, 435–446 (2019)

    Article  Google Scholar 

  80. J. Yu, T. Ma, S. Liu, Enhanced photocatalytic activity of mesoporous TiO2 aggregates by embedding carbon nanotubes as electron-transfer channel. Phys. Chem. Chem. Phys. 13, 3491–3501 (2011)

    Article  CAS  Google Scholar 

  81. A. Šutka, M. Millers, N. Döbelin, R. Pärna, M. Vanags, M. Maiorov, J. Kleperis, T. Käämbre, U. Joost, E. Nõmmiste, Photocatalytic activity of anatase–nickel ferrite heterostructures. Physica Status Solidi (a) 212, 796–803 (2015)

    Article  Google Scholar 

  82. H. Lin, C. Huang, W. Li, C. Ni, S.I. Shah, Y.-H. Tseng, Size dependency of nanocrystalline TiO2 on its optical property and photocatalytic reactivity exemplified by 2-chlorophenol. Appl. Catal. B 68, 1–11 (2006)

    Article  CAS  Google Scholar 

  83. H. Görgülüer, B. Çakıroğlu, M. Özacar, Ag NPs deposited TiO2 coating material for superhydrophobic, antimicrobial and self-cleaning surface fabrication on fabric. J. Coat. Technol. Res. 18, 569–579 (2021)

    Article  Google Scholar 

  84. X. Wang, Y. Li, M. Wang, W. Li, M. Chen, Y. Zhao, Synthesis of tunable ZnS–CuS microspheres and visible-light photoactivity for rhodamine B. New J. Chem. 38, 4182–4189 (2014)

    Article  CAS  Google Scholar 

  85. S.G. Bratsch, Revised Mulliken electronegativities: I. Calculation and conversion to Pauling units. J. Chem. Educ. 65, 34 (1988)

    Article  CAS  Google Scholar 

  86. H. Khan, M.G. Rigamonti, G.S. Patience, D.C. Boffito, Spray dried TiO2/WO3 heterostructure for photocatalytic applications with residual activity in the dark. Appl. Catal. B 226, 311–323 (2018)

    Article  CAS  Google Scholar 

  87. Y. Xia, Z. He, J. Su, B. Tang, K. Hu, Y. Lu, S. Sun, X. Li, Fabrication of magnetically separable NiFe2O4/BiOI nanocomposites with enhanced photocatalytic performance under visible-light irradiation. RSC Adv. 8, 4284–4294 (2018)

    Article  CAS  Google Scholar 

  88. M. Talaei, S. Hassanzadeh-Tabrizi, A. Saffar-Teluri, Synthesis of mesoporous CuFe2O4@ SiO2 core-shell nanocomposite for simultaneous drug release and hyperthermia applications. Ceram. Int. 47, 30287–30297 (2021)

    Article  CAS  Google Scholar 

  89. S. Sendhilnathan, P.I. Rajan, T. Adinaveen, Synthesis and characterization of NiFe2O4 nanoparticles for the enhancement of direct sunlight photocatalytic degradation of methyl orange. J. Supercond. Novel Magn. 31, 3315–3322 (2018)

    Article  Google Scholar 

  90. I.K. Konstantinou, T.A. Albanis, TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: kinetic and mechanistic investigations: a review. Appl. Catal. B 49, 1–14 (2004)

    Article  CAS  Google Scholar 

  91. D.S. Kim, S.J. Han, S.-Y. Kwak, Synthesis and photocatalytic activity of mesoporous TiO2 with the surface area, crystallite size, and pore size. J. Colloid Interface Sci. 316, 85–91 (2007)

    Article  CAS  Google Scholar 

  92. N. Omrani, A. Nezamzadeh-Ejhieh, A ternary Cu2O/BiVO4/WO3 nano-composite: Scavenging agents and the mechanism pathways in the photodegradation of sulfasalazine. J. Mol. Liq. 315, 113701 (2020)

    Article  CAS  Google Scholar 

  93. T.B. Nguyen, R.-A. Doong, Heterostructured ZnFe2O4/TiO2 nanocomposites with a highly recyclable visible-light-response for bisphenol A degradation. RSC Adv. 7, 50006–50016 (2017)

    Article  CAS  Google Scholar 

  94. M.J. Khan, R. Singh, K.B. Joshi, V. Vinayak, TiO2 doped polydimethylsiloxane (PDMS) and Luffa cylindrica based photocatalytic nanosponge to absorb and desorb oil in diatom solar panels. RSC Adv. 9, 22410–22416 (2019)

    Article  CAS  Google Scholar 

  95. B. Bolvardi, J. Seyfi, I. Hejazi, M. Otadi, H.A. Khonakdar, S.M. Davachi, Towards an efficient and durable superhydrophobic mesh coated by PDMS/TiO2 nanocomposites for oil/water separation. Appl. Surf. Sci. 492, 862–870 (2019)

    Article  CAS  Google Scholar 

  96. Y. Zhu, K. Pan, L. Jiang, Y. Dan, Preparation and evaluation of photocatalytic activity of poly (dimethylsiloxane)–titanium dioxide composites. Plast. Rubber Compos. 36, 360–364 (2007)

    Article  CAS  Google Scholar 

  97. X. Wang, H. Ding, S. Sun, H. Zhang, R. Zhou, Y. Li, Y. Liang, J. Wang, Preparation of a temperature-sensitive superhydrophobic self-cleaning SiO2-TiO2@ PDMS coating with photocatalytic activity. Surf. Coat. Technol. 408, 126853 (2021)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

MM: Conceptualization, methodology, formal analysis, data curation, investigation, visualization, writing, and review. SAHT: Conceptualization, methodology, formal analysis, investigation, data curation, visualization, writing, and review.

Corresponding author

Correspondence to S. A. Hassanzadeh-Tabrizi.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Masoud, M., Hassanzadeh-Tabrizi, S.A. Evaluating the potential of MesoporousTiO2/ NiFe2O4 nano composite integrated on polydimethylsiloxane sponge for degradation of Methyl Orange. J Mater Sci: Mater Electron 34, 2256 (2023). https://doi.org/10.1007/s10854-023-11599-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-11599-w

Navigation