Skip to main content
Log in

Hydrogen generation from Red Sea water using CsSnI2Cl lead-free perovskite/porous CuO nanomaterials: Coast of Jeddah, Saudi Arabia

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

This study performed the preparation of inorganic CsSnI2Cl Lead-free perovskite material with a great optical behavior that qualifies these materials for photoelectrode application. CsSnI2Cl is prepared through the casting adding the perovskite solution on porous CuO that previously prepared under the combustion of Cu-foil. Through short heating, the CsSnI2Cl/CuO/Cu photoelectrode is prepared. This perovskite material is confirmed through the optical absorbance that has a great optical behavior with a band gap of 1.75 eV. The application of CsSnI2Cl/CuO/Cu for hydrogen generation is performed using red sea water as an electrolyte, in which the hydrogen generation rate is estimated using the produced current density (Jph) value. This Jph value is 20 mA/cm2 under a metal halide lamp. Moreover, this photoelectrode is estimated under various wavelengths, in which the optimum Jph (10.8 mA cm−2) is achieved at 340 nm, in which the incident photon to electron conversion efficiency is 33% at this wave lengths. This photoelectrode provides its qualified for hydrogen generation reaction under a wide optical range from 340 to 730 nm. Soon, our team is working on designing an electrochemical cell that can convert the red sea water into hydrogen gas directly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

All data generated or analysed during this study are included in this article.

References

  1. X. Yan, J. Biemolt, K. Zhao, Y. Zhao, X. Cao, Y. Yang, X. Wu, G. Rothenberg, N.A. Yan, Membrane-free flow electrolyzer operating at high current density using earth-abundant catalysts for water splitting. Nat. Commun. 12, 1–9 (2021). https://doi.org/10.1038/s41467-021-24284-5

    Article  CAS  Google Scholar 

  2. H. Xie, Z. Zhao, T. Liu, Y. Wu, C. Lan, W. Jiang, L. Zhu, Y. Wang, D. Yang, Z.A. Shao, Membrane-based seawater electrolyser for hydrogen generation. Nature 612, 673–678 (2022). https://doi.org/10.1038/s41586-022-05379-5

    Article  CAS  Google Scholar 

  3. X. Zhang, X. Zhao, P. Zhu, Z. Adler, Z.-Y. Wu, Y. Liu, H. Wang, Electrochemical oxygen reduction to hydrogen peroxide at practical rates in strong acidic media. Nat. Commun. 13, 1–11 (2022). https://doi.org/10.1038/s41467-022-30337-0

    Article  CAS  Google Scholar 

  4. Hydrogen generation from biomass by pyrolysis. Nat. Rev. Methods Prim. (2022) https://doi.org/10.1038/s43586-022-00113-x

  5. F.H. Alkallas, A.M. Elsayed, A. Ben Gouider Trabelsi, S. AlFaify, M. Shkir, T.A. Alrebdi, S. Almugren, K. Kusmatsev, F.V. Rabia, Impact of rolled graphene oxide grown on polyaniline for photodetection: future challenging opto-device. Coatings 13, 437 (2023). https://doi.org/10.3390/COATINGS13020437

    Article  CAS  Google Scholar 

  6. A.M. Elsayed, F.H. Alkallas, A.B.G. Trabelsi, S. AlFaify, M. Shkir, T.A. Alrebdi, K.S. Almugren, F.V. Kusmatsev, M. Rabia, Photodetection enhancement via graphene oxide deposition on poly 3-methyl aniline. Micromachines 14, 606 (2023). https://doi.org/10.3390/MI14030606

    Article  Google Scholar 

  7. M. Rabia, N.M.A. Hadia, O.M. Farid, A.A.A. Abdelazeez, S.H. Mohamed, M. Shaban, Poly(m-toluidine)/rolled graphene oxide nanocomposite photocathode for hydrogen generation from wastewater. Int. J. Energy Res. 46, 11943–11956 (2022). https://doi.org/10.1002/ER.7963

    Article  CAS  Google Scholar 

  8. H. Mostafa, A.M. Ahmed, M. Shaban, A.A. Abdel-Khaliek, F. Hasan, F. Mohammed Alzahrani, M. Rabia, Design and characterization of nanostructured Ag2O-Ag/Au based on Al2O3 Template membrane for photoelectrochemical water splitting and hydrogen generation. Photonics 9, 968 (2022). https://doi.org/10.3390/PHOTONICS9120968

    Article  CAS  Google Scholar 

  9. M.M. Doroodmand, S. Owji, Alternate layer by layered self assembly of conjugated and unconjugated salen based nanowires as capacitive pseudo supercapacitor. Sci. Rep. 11, 1–8 (2021). https://doi.org/10.1038/s41598-021-98288-y

    Article  CAS  Google Scholar 

  10. X. Xiao, B. Han, G. Chen, L. Wang, Y. Wang, Preparation and electrochemical performances of carbon sphere@ZnO core-shell nanocomposites for supercapacitor applications. Sci. Rep. 7, 1–13 (2017). https://doi.org/10.1038/srep40167

    Article  CAS  Google Scholar 

  11. F. Cao, W. Tian, M. Wang, M. Wang, L. Li, Stability enhancement of lead-free CsSnI3 perovskite photodetector with reductive ascorbic acid additive. InfoMat 2, 577–584 (2020). https://doi.org/10.1002/INF2.12074

    Article  CAS  Google Scholar 

  12. X. Feng, Y. He, W. Qu, J. Song, W. Pan, M. Tan, B. Yang, H. Wei, Spray-coated perovskite hemispherical photodetector featuring narrow-band and wide-angle imaging. Nat. Commun. 13, 1–9 (2022). https://doi.org/10.1038/s41467-022-33934-1

    Article  CAS  Google Scholar 

  13. A. Gamal, M. Alruqi, M. Rabia, CsPbI3 lead and CsSnI3 lead-free perovskite materials for solar cell device. Int. J. Energy Res. (2022). https://doi.org/10.1002/ER.8742

    Article  Google Scholar 

  14. A.A.A. Abdelazeez, G.A. El-Fatah, M. Shaban, A.M. Ahmed, M.I.T.O. Rabia, Poly-3-methylaniline/Au electrode for electrochemical water splitting and dye removal. ECS J. Solid State Sci. Technol. 10, 123009 (2021). https://doi.org/10.1149/2162-8777/AC3D1A

    Article  CAS  Google Scholar 

  15. M. Rabia, S.H. Mohamed, H. Zhao, M. Shaban, Y. Lei, A.M. Ahmed, TiO2/TiOxNY hollow mushrooms-like nanocomposite photoanode for hydrogen electrogeneration. J. Porous Mater. 27, 133–139 (2020). https://doi.org/10.1007/s10934-019-00792-0

    Article  CAS  Google Scholar 

  16. M. Rabia, H.S.H. Mohamed, M. Shaban, S. Taha, Preparation of polyaniline/PbS core-shell nano/microcomposite and its application for photocatalytic H2 electrogeneration from H2O. Sci. Rep. 8, 1107 (2018). https://doi.org/10.1038/s41598-018-19326-w

    Article  CAS  Google Scholar 

  17. A.M.A. El-Rahman, M. Rabia, S.H. Mohamed, Nitrogen doped TiO2 films for hydrogen generation and optoelectronic applications. J. Mater. Sci.: Mater. Electron. 34, 1–9 (2023). https://doi.org/10.1007/S10854-023-10551-2

    Article  Google Scholar 

  18. M. Rabia, A.M. Elsayed, M.A. Alnuwaiser, Cr2S3-Cr2O3/Poly-2-aminobenzene-1-thiol as a highly photocatalytic material for green hydrogen generation from sewage water. Micromachines 14, 1567 (2023). https://doi.org/10.3390/MI14081567

    Article  Google Scholar 

  19. M. Shaban, M. Rabia, M.G. Eldakrory, R.M. Maree, A.M. Ahmed, Efficient photoselectrochemical hydrogen production utilizing of APbI3 (A = Na, Cs, and Li) perovskites nanorods. International Journal of Energy Research (2020). https://doi.org/10.1002/er.6326

    Article  Google Scholar 

  20. W. Zhan, Z. Chen, J. Hu, X. Chen, Vertical CuO nanowires array electrodes: visible light sensitive photoelectrochemical biosensor of ethanol detection. Mater. Sci. Semiconduct. Process. 85, 90–97 (2018). https://doi.org/10.1016/J.MSSP.2018.06.002

    Article  CAS  Google Scholar 

  21. J.-H. Kim, A. Katoch, S.-W. Choi, S.S. Kim, Growth and sensing properties of networked P-CuO nanowires. Sens. Actuators: B. Chem. (2015). https://doi.org/10.1016/J.SNB.2014.12.081

    Article  Google Scholar 

  22. Q.A. Akkerman, V. D’Innocenzo, S. Accornero, A. Scarpellini, A. Petrozza, M. Prato, L. Manna, Tuning the optical properties of cesium lead halide perovskite nanocrystals by anion exchange reactions. J. Am. Chem. Soc. 137, 10276–10281 (2015). https://doi.org/10.1021/jacs.5b05602

    Article  CAS  Google Scholar 

  23. M.S.S. Fadel, M. Rabia, S. Ezzat, N. Mansour, E. Saeed, S.M. Sayyah, Effect of annealing temperature on VO2(M)/ITO film nanomaterials for thermochromic smart windows application and study its contact angle. J. Nanophotonics (2018). https://doi.org/10.1117/1.JNP.12.016009

    Article  Google Scholar 

  24. M. Nadafan, Z. Dehghani, Z. Shadrokh, Y.A. Abdi, Remarkable third-order nonlinear optical behavior of single-crystal bromide organic-inorganic lead halide perovskite. Opt. Laser Technol. 160, 109055 (2023). https://doi.org/10.1016/J.OPTLASTEC.2022.109055

    Article  CAS  Google Scholar 

  25. Z. Rehman ur, M.A. Rehman, H. Chaudhry, M. Awais, Ab initio insight into the structural, vibrational, electronic, optical, magnetic, and thermal properties of lead-free perovskite Cs3Sb2Cl9 for solar cell application. J. Phys. Chem. Solids 182, 111548 (2023). https://doi.org/10.1016/J.JPCS.2023.111548

    Article  Google Scholar 

  26. A. Almohammedi, M. Shaban, H. Mostafa, M. Rabia, Nanoporous TiN/TiO2/alumina membrane for photoelectrochemical hydrogen production from sewage water. Nanomaterials 11, 2617 (2021). https://doi.org/10.3390/NANO11102617

    Article  CAS  Google Scholar 

  27. H.H. Omar, B.M. Abdullatif, M.M. El-Kazan, A.M. El-Gendy, Red Sea water and biochemical composition of seaweeds at Southern Coast of Jeddah, Saudi Arabia. Life Sci. J. 10, 1073–1080 (2013)

    Google Scholar 

  28. A. Naldoni, U. Guler, Z. Wang, M. Marelli, F. Malara, X. Meng, L.V. Besteiro, A.O. Govorov, A.V. Kildishev, A. Boltasseva et al., Broadband hot-electron collection for solar water splitting with plasmonic titanium nitride. Adv. Opt. Mater. 5, 1601031 (2017). https://doi.org/10.1002/adom.201601031

    Article  CAS  Google Scholar 

  29. C.C. Stoumpos, C.D. Malliakas, M.G. Kanatzidis, Semiconducting tin and lead iodide perovskites with Organic cations: phase transitions, high mobilities, and near-infrared photoluminescent properties. Inorg. Chem. 52, 9019–9038 (2013). https://doi.org/10.1021/ic401215x

    Article  CAS  Google Scholar 

  30. S.A. Hameed, H.A. Ewais, M. Rabia, Dumbbell-like shape Fe2O3/Poly-2-aminothiophenol nanocomposite for two-symmetric electrode supercapacitor application. J. Mater. Sci.: Mater. Electron. 34, 1–8 (2023). https://doi.org/10.1007/S10854-023-10586-5/METRICS

    Article  Google Scholar 

  31. J. Zhang, C. Yu, L. Wang, Y. Li, Y. Ren, K. Shum, Energy barrier at the N719-dye/CsSnI3 interface for photogenerated holes in dye-sensitized solar cells. Sci. Rep. 4, 1–6 (2014). https://doi.org/10.1038/srep06954

    Article  CAS  Google Scholar 

  32. X. Huang, M. Zhang, R. Sun, G. Long, Y. Liu, W. Zhao, Enhanced hydrogen evolution from CuOx-C/TiO2 with multiple electron transport pathways. PLOS ONE 14, e0215339 (2019). https://doi.org/10.1371/JOURNAL.PONE.0215339

    Article  CAS  Google Scholar 

  33. V. Ragupathi, M.A. Raja, P. Panigrahi, N. Ganapathi Subramaniam, CuO/g-C3N4 nanocomposite as promising photocatalyst for photoelectrochemical water splitting. Optik 208, 164569 (2020). https://doi.org/10.1016/J.IJLEO.2020.164569

    Article  CAS  Google Scholar 

  34. S. Masudy-Panah, R.S. Moakhar, C.S. Chua, H.R. Tan, T.I. Wong, D. Chi, G.K. Dalapati, Nanocrystal engineering of sputter-grown CuO photocathode for visible-light-driven electrochemical water splitting. ACS Appl. Mater. Interfaces 8, 1206–1213 (2016). https://doi.org/10.1021/ACSAMI.5B09613

    Article  CAS  Google Scholar 

  35. L. Jin, B. AlOtaibi, D. Benetti, S. Li, H. Zhao, Z. Mi, A. Vomiero, F. Rosei, Near-infrared colloidal quantum dots for efficient and durable photoelectrochemical solar-driven hydrogen production. Adv. Sci. 3, 1500345 (2016). https://doi.org/10.1002/ADVS.201500345

    Article  Google Scholar 

  36. J. Li, X. Jin, R. Li, Y. Zhao, X. Wang, X. Liu, H. Jiao, Copper oxide nanowires for efficient photoelectrochemical water splitting. Appl. Catal. B 240, 1–8 (2019). https://doi.org/10.1016/J.APCATB.2018.08.070

    Article  CAS  Google Scholar 

  37. M. Ebaid, J.-H. Kang, S.-W. Ryu, Controlled synthesis of GaN-based nanowires for photoelectrochemical water splitting applications. Semicond. Sci. Technol. 32, 013001 (2016). https://doi.org/10.1088/0268-1242/32/1/013001

    Article  CAS  Google Scholar 

  38. E. Baran Aydin, Fabrication and characterization of CuO nanostructures: applications in electrocatalytic hydrogen production. Çukurova Univ. J. Fac. Eng. Archit. 35, 127–138 (2020)

    Google Scholar 

  39. B.D. Sherman, D.L. Ashford, A.M. Lapides, M.V. Sheridan, K.-R. Wee, T.J. Meyer, Light-driven water splitting with a molecular electroassembly-based core/shell photoanode. J. Phys. Chem. Lett. 6, 3213–3217 (2015). https://doi.org/10.1021/ACS.JPCLETT.5B01370

    Article  CAS  Google Scholar 

  40. G. Liu, S.K. Karuturi, H. Chen, D. Wang, J.W. Ager, A.N. Simonov, A. Tricoli, Enhancement of the photoelectrochemical water splitting by perovskite BiFeO3 via interfacial engineering. Sol. Energy 202, 198–203 (2020). https://doi.org/10.1016/j.solener.2020.03.117

    Article  CAS  Google Scholar 

  41. E. Freeman, S. Kumar, S.R. Thomas, H. Pickering, D.J. Fermin, S. Eslava, PrFeO3 photocathodes prepared through spray pyrolysis. ChemElectroChem 7, 1365–1372 (2020). https://doi.org/10.1002/celc.201902005

    Article  CAS  Google Scholar 

  42. H. Uchiyama, K. Isobe, H. Kozuka, Preparation of porous CuO films from Cu(NO3)2 aqueous solutions containing poly(vinylpyrrolidone) and their photocathodic properties. RSC Adv. (2017). https://doi.org/10.1039/c6ra26590a

    Article  Google Scholar 

  43. K.D. Modibane, N.J. Waleng, K.E. Ramohlola, T.C. Maponya, G.R. Monama, K. Makgopa, M.J. Hato, Poly(3-aminobenzoic acid) decorated with cobalt zeolitic benzimidazolate framework for electrochemical production of clean hydrogen. Polymers 12, 1581 (2020). https://doi.org/10.3390/polym12071581

    Article  CAS  Google Scholar 

  44. L. Zhenhu, F. Shuanglong, L. Shuangyi, L. Xin, W. Liang, L. Wenqiang, A three-dimensional interconnected hierarchical FeOOH/TiO2/ZnO nanostructural photoanode for enhancing the performance of photoelectrochemical water oxidation. Nanoscale. 7, 19178–19183 (2015). https://doi.org/10.1039/C5NR06212H

    Article  CAS  Google Scholar 

  45. Z. Wang, D. Cao, L. Wen, R. Xu, M. Obergfell, Y. Mi, Z. Zhan, N. Nasori, J. Demsar, Y. Lei, Manipulation of charge transfer and transport in plasmonic-ferroelectric hybrids for photoelectrochemical applications. Nat. Commun. 7, 1–8 (2016). https://doi.org/10.1038/ncomms10348

    Article  CAS  Google Scholar 

  46. M. Shaban, M. Rabia, A.M.A. El-Sayed, A. Ahmed, S. Sayed, Photocatalytic properties of PbS/graphene oxide/polyaniline electrode for hydrogen generation. Sci. Rep. 7, 1–13 (2017). https://doi.org/10.1038/s41598-017-14582-8

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The Deanship of Scientific Research (DSR) at King Abdulaziz University (KAU), Jeddah, Saudi Arabia has funded this Project under grant no (G: 026-130-1443).

Author information

Authors and Affiliations

Authors

Contributions

All the authors have shared well in this manuscript. All authors approve this submission.

Corresponding authors

Correspondence to Hassan A Ewais or Mohamed Rabia.

Ethics declarations

Conflict of interest

The authors have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al Angari, Y.M., Ewais, H.A. & Rabia, M. Hydrogen generation from Red Sea water using CsSnI2Cl lead-free perovskite/porous CuO nanomaterials: Coast of Jeddah, Saudi Arabia. J Mater Sci: Mater Electron 34, 2160 (2023). https://doi.org/10.1007/s10854-023-11597-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-11597-y

Navigation