Skip to main content
Log in

Crystal growth, structural, Hirshfeld surface analysis, optical and laser damage threshold analysis of 2-Methylimidazolium glutarate single crystal: third-order nonlinear optical applications

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

A single crystal 2-Methylmidazolium glutarate (2MIG) was grown using a low-temperature solution growth method using methanol as a solvent. Optically, a good quality single crystal of size 12 × 8 × 4 mm3 was grown at 42 °C. X-ray diffraction analysis was employed to determine lattice cell parameters and the identity of the phase with hkl planes of 2MIG crystal. Nuclear magnetic resonance 1H and 13C spectrums identified the grown crystal proton and carbon orientation. The compound’s elementary percentages were validated using a CHNO analyzer. The functional groups present in 2MIG were identified through FT-IR spectral analysis. The intermolecular interactions in the crystal structure, including the C–H⋯π, C–H⋯O, and N–H⋯O interactions, were investigated and confirmed by molecular Hirshfeld surface analysis. In UV spectra, a lower cut-off value at 288 nm and a wide band gap of 4.21 eV for the 2MIG crystal are observed. A single-shot laser was used to measure the surface-induced laser damage to the grown crystal. TG/DTA was used to discuss the thermal stability of 2MIG. Meyer’s index number (4.79) in hardness studies confirmed the soft nature of the crystals. Voids have been used to describe the mechanical strength of crystalline materials. The temperature-dependent dielectric loss and dielectric constant were determined in the 1 to 6 Hz frequency range. The Z-scan method determined the third-order nonlinear optical parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Data availability

The data supporting this study’s findings are available from the corresponding author upon reasonable request.

References

  1. C.B. Aakeroy, P.B. Hitchcock, J. Mater. Chem. 3, 1129–1135 (1993)

    Article  CAS  Google Scholar 

  2. C. Ji, T. Chen, Z. Sun, Y. Ge, W. Lin, J. Luo, Q. Shi, M. Hong, Cryst. Eng. Commun. 15, 2157–2162 (2013)

    Article  CAS  Google Scholar 

  3. S. Park, O.H. Kwon, S. Kim, S. Park, M.G. Choi, M. Cha, S.Y. Park, D.J. Jang, J. Am. Chem. Soc. 127, 10070–10074 (2005)

    Article  CAS  Google Scholar 

  4. P. Karuppasamy, T. Kamalesh, M. Senthil Pandian, P. Ramasamy., J. Mater. Sci. : Mater. Electron. 32, 12: 16467–16480 (2021)

    CAS  Google Scholar 

  5. H.S. Nalwa, S. Miyata, Nonlinear optics of organic molecules and polymers (CRC Press, Boca Raton, 1997)

    Google Scholar 

  6. S. Manivannan, S. Dhanuskodi, J. Cryst. Growth. 262, 473 (2004)

    Article  CAS  Google Scholar 

  7. S. Chinnasami, R. Paulraj, R. Bhatt, I. Bhaumik, P. Ramasamy, A.K. Karnal, Opt. Mater. 108, 110380 (2020)

    Article  CAS  Google Scholar 

  8. Y. Sunairi, A. Ueda, J. Yoshida, K. Suzuki, H. Mori, J. Phys. Chem. C 122, 11623–11632 (2018)

    Article  CAS  Google Scholar 

  9. C. Sidden, R. Paulraj, S. Ajitha., J. Mater. Sci. Mater. Electron. 34, 11, 964 (2023)

    Article  Google Scholar 

  10. A. Steephenraj, C. Sidden, R. Paulraj, S.S.J. Dhas, J. Mol. Struct. 1275, 134665 (2023)

    Article  CAS  Google Scholar 

  11. P.K. Vishwakarma, S.J. Pushpendra, K.P. Mahendra, C.M. Ram, K.R. Deepak, C. Aniteshma, S. Abhilasha, A.J. Ahad, Biomol. Struct. Dyn. 41(11), 5305–5316 (2023)

    CAS  Google Scholar 

  12. S.K. Callear, M.B. Hursthouse, T.L. Threlfall, Cryst. Eng. Comm. 12, 3: 898–908 (2010)

    Article  CAS  Google Scholar 

  13. R. Veligeti, J.S. Anireddy, R.B. Madhu, A. Bendi, P. Lakshmi, Praveen, D.S. Ramakrishna, J. Inorg. Organomet. Polym. Mater. 2023, 1–13

  14. A. Udayasri, M.M. Chandrasekhar, M.V.N. Brahmeswararao, G. Varanasi, P. Lakshmi, Praveen, D.S. Ramakrishna, Top. Catal. 65, 19–20 (2022)

    Article  Google Scholar 

  15. Z.G. Zou, Y.X. Li, Y. Zhang, Adv. Cryst. Growth Res. 1(1), 1–10 (2023)

    Google Scholar 

  16. Y.H. Zhao, Z.H. Liu, J.G. Xu, Chinese, J. Chem. Eng. 29(11), 525–531 (2021)

    Google Scholar 

  17. W. Kaminsky, J. Appl. Crystallogr. 40, 2: 382–385 (2007)

    Article  CAS  Google Scholar 

  18. MERCURY 1.3, Cambridge crystallographic data centre (CCDC Software Limited, Cambridge, 2004)

    Google Scholar 

  19. J. Mohan, Alpha Science Int’l Ltd., United Kingdom, 2004

  20. B.H. Stuard, Wiley online library, 2004

  21. P. Govindasamy, S. Gunasekaran, S. Srinivasan, Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 130, 329–336 (2014)

    Article  CAS  Google Scholar 

  22. M.A. Spackman, D. Jayatilaka, CrystEngComm. 11, 19–32 (2009)

    Article  CAS  Google Scholar 

  23. M.J. Turner, J.J. McKinnon, S.K. Wolff, D.J. Grimwood, P.R. Spackman, D. Jayatilaka, M.A. Spackman, “CrystalExplorer17.“ 2017, 76730

  24. Y.X. Li, Y. Zhang, Z.G. Zou, J. Appl. Phys. 109(12), 123106 (2011)

    Article  Google Scholar 

  25. T.J. Das, Punyatoya, A. Jose, Ghosh, P. Lakshmi, Praveen Eur. Phys. J. E. 45, 12: 98 (2022)

    Article  CAS  Google Scholar 

  26. P. Praveen, D.S. Lakshmi, Ramakrishna, D.P. Ojha, Mol. Cryst. Liq. 643, 1: 76–82 (2017)

    Article  CAS  Google Scholar 

  27. P.L. Praveen, J. Mol. Liq 341, 117424 (2021)

    Article  Google Scholar 

  28. C. Ji, T. Chen, Z. Sun, Y. Ge, W. Lin, L. Junhua, S. Qian, H. Maochun, CrystEngComm 15(11), 2157–2162 (2013)

    Article  CAS  Google Scholar 

  29. K. Rajesh, A. Arun, A. Mani, P.P. Kumar, Mater. Res. Exp. 3, 106203 (2016)

    Article  Google Scholar 

  30. T. Bharanidharan, A. Senthil., J. Mol. Struct. 1272, 134145 (2023)

    Article  CAS  Google Scholar 

  31. K. Elangovan, A. Senthil, G. Vinitha, J. Mater. Sci. Mater. Electron. 30, 13664–13674 (2019)

    Article  CAS  Google Scholar 

  32. P. Nagapandiselvi, C. Baby, R. Gopalakrishnan, Mater. Res. Bull. 81, 33–42 (2016)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work, supported by the DST-SERB, New Delhi, India, under the grant of project ref- EMR/2016/003175 for providing laboratory support, is hereby gratefully acknowledged.

Funding

No funding was received for this work.

Author information

Authors and Affiliations

Authors

Contributions

TB: conceptualisation, methodology, data curation, software, writing—original draft, investigation. AS: supervision, review and editing, validation. 

Corresponding author

Correspondence to A. Senthil.

Ethics declarations

Conflict of interest

There are no conflicts of interest to declare.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bharanidharan, T., Senthil, A. Crystal growth, structural, Hirshfeld surface analysis, optical and laser damage threshold analysis of 2-Methylimidazolium glutarate single crystal: third-order nonlinear optical applications. J Mater Sci: Mater Electron 34, 2186 (2023). https://doi.org/10.1007/s10854-023-11594-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-11594-1

Navigation