Skip to main content
Log in

A novel sensitive gas sensor based on SnO2 molecularly imprinted polymers for monitoring isopropanol

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Isopropanol is one of the most important chemical raw materials and organic solvents, but a large amount of isopropanol will do harm to human health. Therefore, it is essential to monitor isopropanol. In this work, high-performance isopropanol gas sensors were fabricated with SnO2 molecularly imprinted polymers (SnO2 MIPs). All the samples were characterized for performance evaluation. The results show that with molecular imprinting (MI) modification, gas sensors based on SnO2 MIPs have better gas sensing performance for isopropanol compared with pure SnO2. Especially, when the molar ratio of methacrylic acid (MAA) to isopropanol was 6:10, excellent gas sensing performance was achieved. At the optimum working temperature of 300 °C, the response of this sensor to isopropanol of 500 ppm was 33.87, and the response and recovery times were 10 s and 3 s, respectively. In addition, it is proven that MI modification could significantly improve the selectivity of gas sensors to the target gas due to the specific recognition sites. Therefore, SnO2 MIPs with the molar ratio of MAA to isopropanol of 6:10 would be a promising isopropanol sensing material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

All data included in this study are available upon request by contact with the corresponding author.

References

  1. R.J. Slaughter, R.W. Mason, D.M.G. Beasley, J.A. Vale, L.J. Schep, Isopropanol poisoning. Clin. Toxicol. 52, 470–478 (2014). https://doi.org/10.3109/15563650.2014.914527

    Article  CAS  Google Scholar 

  2. Y. Lu, X.X. Liu, Z.Q. Zhao, X.Y. Ou, Y.R. Yang, Q. Wei, J.L. Chen, J. Jiang, Y. Sun, H.P. Zhao et al., Telomere length in peripheral leukocytes is a sensitive marker for assessing genetic damage among workers exposed to isopropanol, lead and noise: the case of an electronics manufacturer. Genes Environ. (2021). https://doi.org/10.1186/s41021-021-00226-x

    Article  Google Scholar 

  3. D.W. Cao, S.M. Xia, P. Pan, H.Y. Zeng, C.J. Li, Y. Peng, Light-driven MPV-type reduction of aryl ketones/aldehydes to alcohols with isopropanol under mild conditions. Green Chem. 23, 7539–7543 (2021). https://doi.org/10.1039/d1gc02449c

    Article  CAS  Google Scholar 

  4. H. Zhan, Environmentally friendly pesticide emulsifier composition useful to produce pesticides comprises acrylic acid, acrylic ester, surfactant, vegetable oil, crosslinking agent, dimethylbenzene, sodium hydroxide, isopropanol, camphor and water. CN107853296-A.

  5. K. Sakurai, K. Uehama, K. Ezaki, Mfg. odourless isopropanol for cosmetics - by reacting propylene and sulphuric acid, distilling to provide high and low boiling fractions etc. JP60224646-A; JP93040736-B.

  6. Z. Hua, Printing ink comprises e.g. pigment, alcohol-soluble polyurethane solution, isopropanol, diluent, polyurethane resin, propyl acetate, and water. CN112480735-A.

  7. H.R. Greene, M.D. Krasowski, Correlation of osmolal gap with measured concentrations of acetone, ethylene glycol, isopropanol, methanol, and propylene glycol in patients at an academic medical center. Toxicol. Rep. 7, 81–88 (2020). https://doi.org/10.1016/j.toxrep.2019.12.005

    Article  CAS  Google Scholar 

  8. K.L. Edelen, A. Barton, W. Banner, Sustained low-efficiency dialysis (SLED) therapy following ingestion of isopropanol in a pediatric patient. Clin. Toxicol. 58, 208–211 (2020). https://doi.org/10.1080/15563650.2019.1616094

    Article  CAS  Google Scholar 

  9. C. Lupu, Separation of ethanol methanol acetone and isopropanol by gas chromatography. Clin. Chem. 12, 537 (1966)

    Google Scholar 

  10. L. Rowbottom, C. Workman, N.B. Roberts, Evaluation of selected-ion flow-tube mass spectrometry for the measurement of ethanol, methanol and isopropanol in physiological fluids: effect of osmolality and sample volume. Rapid Commun. Mass Spectrom. 23, 2763–2767 (2009). https://doi.org/10.1002/rcm.4165

    Article  CAS  Google Scholar 

  11. J.P. Zhu, M.T. Yao, Y.J. Lia, C.C. Chan, In situ thermal degradation of isopropanol under typical thermal desorption conditions for GC-MS analysis of volatile organic compounds. Anal. Methods 6, 6116–6119 (2014). https://doi.org/10.1039/c4ay00415a

    Article  CAS  Google Scholar 

  12. A.M. Kutsyk, O.O. Ilchenko, Y.M. Yuzvenko, V.V. Obukhovsky, V.V. Nikonova, Vibration spectroscopy of complex formation in aqueous solutions of isopropanol. Ukr. J. Phys. 63, 506–512 (2018). https://doi.org/10.15407/ujpe63.6.506

    Article  Google Scholar 

  13. C.Q. Han, Y. Yao, S.S. Lv, Y. Wu, A.X. Lu, C.C. Yan, Y. Liu, X.S. Luo, X.W. Ni, Study on the components of isopropanol aqueous solution. Optik 155, 307–314 (2018). https://doi.org/10.1016/j.ijleo.2017.10.164

    Article  CAS  Google Scholar 

  14. L.J. Guo, W. Liu, C.Q. Wang, Nanoscale Ag-decorated hollow porous CuO/SnO2 heterojunctions for isopropanol detection. Acs Appl Nano Mater 6, 7830–7840 (2023). https://doi.org/10.1021/acsanm.3c00959

    Article  CAS  Google Scholar 

  15. K. Li, M.P. Chen, Q. Rong, Z.Q. Zhu, Q.J. Liu, J. Zhang, High selectivity methanol sensor based on Co-Fe2O3/SmFeO3 p-n heterojunction composites. J. Alloy. Compd. 765, 193–200 (2018). https://doi.org/10.1016/j.jallcom.2018.06.212

    Article  CAS  Google Scholar 

  16. Y. Tan, J. Zhang, Highly sensitive ethanol gas sensors based on Co-doped SnO2 nanobelts and pure SnO2 nanobelts. Physica E-Low-Dimens. Syst. Nanostruct. (2023). https://doi.org/10.1016/j.physe.2022.115604

    Article  Google Scholar 

  17. S.H. Li, Z. Chu, F.F. Meng, T. Luo, X.Y. Hu, S.Z. Huang, Z. Jin, Highly sensitive gas sensor based on SnO2 nanorings for detection of isopropanol. J. Alloy. Compd. 688, 712–717 (2016). https://doi.org/10.1016/j.jallcom.2016.07.248

    Article  CAS  Google Scholar 

  18. Y.Q. Yu, S.T. Liu, Facile synthesis of Ni-doped SnO2 nanorods and their high gas sensitivity to isopropanol. Front. Mater. Sci. (2022). https://doi.org/10.1007/s11706-022-0585-9

    Article  Google Scholar 

  19. Y.L. Kong, Y.X. Li, X.X. Cui, L.F. Su, D. Ma, T.R. Lai, L.J. Yao, X.C. Xiao, Y.D. Wang, SnO2 nanostructured materials used as gas sensors for the detection of hazardous and flammable gases: a review. Nano Materials Science 4, 339–350 (2022). https://doi.org/10.1016/j.nanoms.2021.05.006

    Article  CAS  Google Scholar 

  20. M.P. Chen, Y.M. Zhang, T.P. Lv, K.J. Li, Z.Q. Zhu, J. Zhang, R.H. Zhang, Q.J. Liu, Ag-LaFeO3 nanoparticles using molecular imprinting technique for selective detection of xylene. Mater. Res. Bull. 107, 271–279 (2018). https://doi.org/10.1016/j.materresbull.2018.08.004

    Article  CAS  Google Scholar 

  21. Q.J. Li, M. Wang, Y. Jin, Y.L. Lu, S.Q. Xiong, M.D. Wang, J.H. Xu, C.H. Wei, J.L. Li, Microfluidic synthesis of pH-responsive molecularly imprinted silica nanospheres for fluorescence sensing target glycoprotein. Food Chem. (2023). https://doi.org/10.1016/j.foodchem.2023.136570

    Article  Google Scholar 

  22. W.J. Cheng, Z.J. Liu, Y. Wang, Preparation and application of surface molecularly imprinted silica gel for selective extraction of melamine from milk samples. Talanta 116, 396–402 (2013). https://doi.org/10.1016/j.talanta.2013.05.067

    Article  CAS  Google Scholar 

  23. Q.Q. Zhou, Z.G. Xu, Z.M. Liu, Molecularly imprinting-aptamer techniques and their applications in molecular recognition. Biosensors-Basel (2022). https://doi.org/10.3390/bios12080576

    Article  Google Scholar 

  24. X.P. Fu, Y. Li, S. Gao, Y.Q. Lv, Selective recognition of tumor cells by molecularly imprinted polymers. J. Sep. Sci. 44, 2483–2495 (2021). https://doi.org/10.1002/jssc.202100137

    Article  CAS  Google Scholar 

  25. Y. Cheng, J.Y. Nie, Z.X. Li, Z. Yan, G.F. Xu, H.F. Li, D.K. Guan, A molecularly imprinted polymer synthesized using beta-cyclodextrin as the monomer for the efficient recognition of forchlorfenuron in fruits. Anal. Bioanal. Chem. 409, 5065–5072 (2017). https://doi.org/10.1007/s00216-017-0452-1

    Article  CAS  Google Scholar 

  26. P.N. Zhao, M. Yan, C.C. Zhang, R.X. Peng, D.S. Ma, J.H. Yu, Determination of glyphosate in foodstuff by one novel chemiluminescence-molecular imprinting sensor. Spectrochimica Acta Part a-Mol. Biomol. Spectrosc. 78, 1482–1486 (2011). https://doi.org/10.1016/j.saa.2011.01.037

    Article  CAS  Google Scholar 

  27. Y.B. Hua, Y. Ahmadi, K.H. Kim, Molecularly imprinted polymers for sensing gaseous volatile organic compounds: opportunities and challenges*. Environ. Pollut. (2022). https://doi.org/10.1016/j.envpol.2022.119931

    Article  Google Scholar 

  28. Q.T. Li, W. Zeng, Y.Q. Li, Core-shell NiO sphere prepared by a facile method with enhanced VOC gas sensing. J. Electrochem. Soc. (2022). https://doi.org/10.1149/1945-7111/ac7a60

    Article  Google Scholar 

  29. Q. Rong, K.J. Li, C. Wang, Y.M. Zhang, M.P. Chen, Z.Q. Zhu, J. Zhang, Q.J. Liu, Enhanced performance of an acetone gas sensor based on Ag-LaFeO(3)molecular imprinted polymers and carbon nanotubes composite. Nanotechnology (2020). https://doi.org/10.1088/1361-6528/ab80f9

    Article  Google Scholar 

  30. J.N. Zhang, G. Li, J. Liu, Y.M. Liu, R.Y. Yang, L. Li, Q.Y. Zhao, J.Z. Gao, G.Q. Zhu, B.P. Zhu et al., Metal-organic framework-derived mesoporous rGO-ZnO composite nanofibers for enhanced isopropanol sensing properties. Sensor. Actuat B-Chem. (2023). https://doi.org/10.1016/j.snb.2022.133108

    Article  Google Scholar 

  31. A. Alhadi, S.Y. Ma, Synthesis of Sn doped-Bi2WO6 nanoslices for enhanced isopropanol sensing properties. Physica B-Condensed Matter. (2022). https://doi.org/10.1016/j.physb.2022.413819

    Article  Google Scholar 

  32. C. Zhang, Y.C. Huan, Y. Li, Y.F. Luo, M. Debliquy, Low concentration isopropanol gas sensing properties of Ag nanoparticles decorated In2O3 hollow spheres. J. Adv. Ceram. 11, 379–391 (2022). https://doi.org/10.1007/s40145-021-0530-x

    Article  CAS  Google Scholar 

  33. T.T. Yang, S.Y. Ma, P.F. Cao, X.L. Xu, L. Wang, S.T. Pei, T. Han, X.H. Xu, P.D. Yun, H. Sheng, Synthesis and characterization of ErFeO3 nanoparticles by a hydrothermal method for isopropanol sensing properties. Vacuum (2021). https://doi.org/10.1016/j.vacuum.2020.110005

    Article  Google Scholar 

  34. J.X. Wang, Q. Zhou, S.D. Peng, L.N. Xu, W. Zeng, Volatile organic compounds gas sensors based on molybdenum oxides: a mini review. Front. Chem. (2020). https://doi.org/10.3389/fchem.2020.00339

    Article  Google Scholar 

  35. Z.T. Li, W. Zeng, Q.T. Li, SnO2 as a gas sensor in detection of volatile organic compounds: a review. Sensor Actuat a-Phys (2022). https://doi.org/10.1016/j.sna.2022.113845

    Article  Google Scholar 

  36. C.N. Wang, Y.L. Li, F.L. Gong, Y.H. Zhang, S.M. Fang, H.L. Zhang, Advances in doped ZnO nanostructures for gas sensor. Chem. Rec. 20, 1553–1567 (2020). https://doi.org/10.1002/tcr.202000088

    Article  CAS  Google Scholar 

  37. W.A. Song, M.X. Zhang, W.G. Zhao, Q.L. Zhao, H.S. Hao, H. Lin, W.Y. Gao, S. Yan, Nanostructured SnO2 microsphere-based gas sensor array enhanced by molecular imprinting for methanol and ethanol discriminative detection. Acs Appl Nano Mater 5, 12765–12777 (2022). https://doi.org/10.1021/acsanm.2c02662

    Article  CAS  Google Scholar 

  38. V. Shah, J. Bhaliya, G.M. Patel, P. Joshi, Room-temperature chemiresistive gas sensing of SnO2 nanowires: a review. J. Inorg. Organomet. Polym. Mater. 32, 741–772 (2022). https://doi.org/10.1007/s10904-021-02198-5

    Article  CAS  Google Scholar 

  39. W.Y. Yang, H.L. Shen, J.W. Ge, B.B. Xu, Improving TiO2 gas sensing selectivity to acetone and other gases via a molecular imprinting method. Nanotechnology (2021). https://doi.org/10.1088/1361-6528/abd818

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Graduate Scientific Research and Innovation Foundation of Chongqing, China (No. CYS20001) and the Science and Technology Research Program of Chongqing Municipal Education Commission (No. KJQN201801320).

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

Investigation, Experiments, Data processing, Writing-Original draft preparation, Z.Z.; Reviewing, WZ; Editing, YQL and WZ; Supervision, WZ; Conceptualization and Methodology, WZ and YL; Resources, WZ All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Wen Zeng.

Ethics declarations

Competing interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical approval

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, Z., Li, Y. & Zeng, W. A novel sensitive gas sensor based on SnO2 molecularly imprinted polymers for monitoring isopropanol. J Mater Sci: Mater Electron 34, 2091 (2023). https://doi.org/10.1007/s10854-023-11582-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-11582-5

Navigation