Skip to main content
Log in

Energy transfer and optical properties of NaLaMgWO6:Dy3+, Tb3+ phosphors

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this study, we have prepared several NaLaMgWO6:Dy3+, Tb3+ phosphors using a high-temperature solid-phase method. X-ray diffraction (XRD) and photoluminescence (PL) were used to analyze the physical phase and luminescent characteristics of these materials. Our results showed that in the NaLaMgWO6:xDy3+ phosphor, an ideal doping concentration of x = 8.0 mol% was discovered, which gave off a noticeably yellowish emission band. In NaLaMgWO6:yTb3+ phosphor, the optimal doping concentration of Tb3+ ions were y = 10 mol%. Dy3+ and Tb3+ singly doped phosphors showed significant yellow and green emission at 574 nm and 547 nm, corresponding to the 4F9/2 → 6H13/2 transitions of Dy3+ and the 5D4 → 7F5 transitions of Tb3+, respectively. In the NaLaMgWO6:Dy3+, Tb3+ phosphor, energy transfer was observed, and the mechanism behind it was thoroughly described. Furthermore, the color of the NaLaMgWO6 phosphor could be adjusted from yellowish to greenish by varying the Dy3+/Tb3+ ratio in concentration. These findings demonstrate that co-doped NaLaMgWO6 phosphors containing Dy3+and Tb3+ hold great potential for use in gadgets with fluorescent displays.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

References

  1. G. Li, Y. Tian, Y. Zhao, J. Lin, Recent progress in luminescence tuning of Ce3+ and Eu2+-activated phosphors for pc-WLEDs. Chem. Soc. Rev. 44, 8688–8713 (2015). https://doi.org/10.1039/C4CS00446A

    Article  CAS  Google Scholar 

  2. G. Blasse, Energy transfer between inequivalent Eu2+ ions. J. Solid State Chem. 62, 207–211 (1986). https://doi.org/10.1016/0022-4596(86)90233-1

    Article  CAS  Google Scholar 

  3. R.M. Pallares, X. Su, S.H. Lim, N.T.K. Thanh, Mn2+ and Mn4+ red phosphors: synthesis, luminescence and applications in WLEDs. a review. J. Mater. Chem. C. 4, 53–61 (2016). https://doi.org/10.1039/C5TC02426A

    Article  CAS  Google Scholar 

  4. J. Zhou, N. Sun, Z. Qiu, X. Huang, X. Wang, W. Zhang, Effect of Li+, La3+ co-doping on the photoluminescence enhancement of Sr3AlO4F:Sm3+ orange-red-emitting phosphor for white light-emitting diodes. Mater. Today. Commun. 29, 102806 (2021). https://doi.org/10.1016/j.mtcomm.2021.102806

    Article  CAS  Google Scholar 

  5. J. Liu, Z. Long, S. Xiao, X. Yang, K0.5La0.5SrMgWO6: Mn4+: a high-efficiency perovskite structure phosphor for plant cultivation LEDs. Mater. Today Commun. 31, 103214 (2022). https://doi.org/10.1016/j.mtcomm.2022.103214

    Article  CAS  Google Scholar 

  6. H.-R. Chen, C. Cai, Z.-W. Zhang, L. Zhang, H.-P. Lu, X. Xu, H. Van Bui, K.-H. Qiu, L.-J. Yin, Enhancing the luminescent efficiency of Y3Al5O12:Ce3+ by coating graphitic carbon nitride: toward white light-emitting diodes. J. Alloy. Compd. 801, 10–18 (2019). https://doi.org/10.1016/j.jallcom.2019.06.122

    Article  CAS  Google Scholar 

  7. J. Qiao, L. Ning, M.S. Molokeev, Y.-C. Chuang, Q. Liu, Z. Xia, Eu2+ site preferences in the mixed cation K2BaCa(PO4)2 and thermally stable luminescence. J. Am. Chem. Soc. 140, 9730–9736 (2018). https://doi.org/10.1021/jacs.8b06021

    Article  CAS  Google Scholar 

  8. M.B. Gray, S. Hariyani, T.A. Strom, J.D. Majher, J. Brgoch, P.M. Woodward, High-efficiency blue photoluminescence in the Cs2NaInCl6:Sb3+ double perovskite phosphor. J. Mater. Chem. C. 8, 6797–6803 (2020). https://doi.org/10.1039/D0TC01037E

    Article  CAS  Google Scholar 

  9. I. Gupta, S. Singh, S. Bhagwan, D. Singh, Rare earth (RE) doped phosphors and their emerging applications: a review. Cream. Int. 47, 19282–19303 (2021). https://doi.org/10.1016/j.ceramint.2021.03.308

    Article  CAS  Google Scholar 

  10. D. Tahaoğlu, H. Usta, F. Alkan, Revisiting the role of charge transfer in the emission properties of carborane-fluorophore systems: a TDDFT investigation. J. Phys. Chem. A 126, 4199–4210 (2022). https://doi.org/10.1021/acs.jpca.2c02435

    Article  CAS  Google Scholar 

  11. P. Halappa, H.M. Rajashekar, C. Shivakumara, Synthesis and structural characterization of orange red light emitting Sm3+ activated BiOCl phosphor for WLEDs applications. J. Alloy. Compd. 785, 169–177 (2019). https://doi.org/10.1016/j.jallcom.2019.01.155

    Article  CAS  Google Scholar 

  12. P. Halappa, A. Mathur, M.-H. Delville, C. Shivakumara, Alkali metal ion co-doped Eu3+ activated GdPO4 phosphors: structure and photoluminescence properties. J. Alloy. Compd. 740, 1086–1098 (2018). https://doi.org/10.1016/j.jallcom.2018.01.087

    Article  CAS  Google Scholar 

  13. H. Liu, Z. Guo, Ce3+ and Dy3+ doped Sr3B2O6: solid state synthesis and tunable luminescence. J. Lumin. 187, 181–185 (2017). https://doi.org/10.1016/j.jlumin.2017.03.008

    Article  CAS  Google Scholar 

  14. Y. Yang, X. Wang, B. Liu, Y. Zhang, X. Lv, J. Li, L. Wei, H. Yu, Y. Hu, H. Zhang, Molten salt synthesis and luminescence of Dy3+-doped Y3Al5O12 phosphors. Luminescence 35, 580–585 (2020). https://doi.org/10.1002/bio.3759

    Article  CAS  Google Scholar 

  15. B. Han, Y. Dai, J. Zhang, H. Shi, Luminescence properties of a novel yellow-emitting phosphor NaLaMgWO6: Dy3+. Mater. Lett. 204, 145–148 (2017). https://doi.org/10.1016/j.matlet.2017.06.036

    Article  CAS  Google Scholar 

  16. B. Devakumar, P. Halappa, C. Shivakumara, Dy3+/Eu3+ co-doped CsGd(MoO4)2 phosphor with tunable photoluminescence properties for near-UV WLEDs applications. Dyes Pigm. 137, 244–255 (2017). https://doi.org/10.1016/j.dyepig.2016.10.016

    Article  CAS  Google Scholar 

  17. W. Costa Macedo, A. Germano Bispo Junior, K. De Oliveira Rocha, A.E. De Souza Albas, A.M. Pires, S. Rainho Teixeira, E. Longo, Photoluminescence of Eu3+-doped CaZrO red-emitting phosphors synthesized via microwave-assisted hydrothermal method. Mater. Today Commun. 24, 100966 (2020). https://doi.org/10.1016/j.mtcomm.2020.100966

    Article  CAS  Google Scholar 

  18. X. Li, X. Gao, X. Zhang, X. Shen, M. Lu, J. Wu, Z. Shi, V.L. Colvin, J. Hu, X. Bai, W.W. Yu, Y. Zhang, Lead-free halide perovskites for light emission: recent advances and perspectives. Adv. Sci. 8, 2003334 (2021). https://doi.org/10.1002/advs.202003334

    Article  CAS  Google Scholar 

  19. X. Zhou, J. Qiao, Z. Xia, Learning from mineral structures toward new luminescence materials for light-emitting diode applications. Chem. Mater. 33, 1083–1098 (2021). https://doi.org/10.1021/acs.chemmater.1c00032

    Article  CAS  Google Scholar 

  20. J. Hou, X. Yin, F. Huang, W. Jiang, Synthesis and photoluminescence properties of NaLaMgWO6:RE3+ (RE=Eu, Sm, Tb) phosphor for white LED application. Mater. Res. Bull. 47, 1295–1300 (2012). https://doi.org/10.1016/j.materresbull.2012.03.023

    Article  CAS  Google Scholar 

  21. G. Li, Y. Wang, Y. Wei, X. Wang, Structure, energy transfer, and luminescence properties of NaLaMgWO6: Tb3+, Eu3+ phosphors for solid-state lighting. J. Mater. Sci. Mater. Electron. 31, 3835–3844 (2020). https://doi.org/10.1007/s10854-020-02918-6

    Article  CAS  Google Scholar 

  22. T.-Y. Hwang, Y. Choi, Y. Song, N.S.A. Eom, S. Kim, H.-B. Cho, N.V. Myung, Y.-H. Choa, Fast synthesis of Dy3+ and Tm3+ co-doped double perovskite NaLaMgWO6: a thermally stable singlephase white-emitting phosphor for WLEDs. J. Mater. Chem. C. 6, 972–979 (2018). https://doi.org/10.1039/C7TC03576D

    Article  CAS  Google Scholar 

  23. Y. Wu, F. Yang, F. Yan, R. Zuo, Tunable yellow–red emission performance of Dy3+, Mn4+: NaLaMgWO6 phosphors excited with 390-nm LED. Appl. Phys. A 127, 238 (2021). https://doi.org/10.1007/s00339-021-04392-1

    Article  CAS  Google Scholar 

  24. S. García-Martín, E. Urones-Garrote, M.C. Knapp, G. King, P.M. Woodward, Transmission electron microscopy studies of NaLaMgWO6: spontaneous formation of compositionally modulated stripes. J. Am. Chem. Soc. 130, 15028–15037 (2008). https://doi.org/10.1021/ja802511d

    Article  CAS  Google Scholar 

  25. J. Zhang, Y. Dai, B. Liu, B. Han, Luminescence quenching of Er3+/Sm3+ in color-tunable NaLaMgWO6:Er3+, Sm3+ phosphor. Optik 172, 1129–1133 (2018). https://doi.org/10.1016/j.ijleo.2018.07.120

    Article  CAS  Google Scholar 

  26. Y. Peng, Y. Huang, Z. Lei, H. Wang, J. Liu, Y. Mou, M. Chen, Rapid and efficient preparation of phosphor-in-glass converter by induction heating for high-power white LEDs/LDs. Mater. Today Commun. 29, 102839 (2021). https://doi.org/10.1016/j.mtcomm.2021.102839

    Article  CAS  Google Scholar 

  27. Q. Liu, X. Li, B. Zhang, L. Wang, Q. Zhang, L. Zhang, Structure evolution and delayed quenching of the double perovskite NaLaMgWO6:Eu3+ phosphor for white LEDs. Ceram. Int. 42, 15294–15300 (2016). https://doi.org/10.1016/j.ceramint.2016.06.169

    Article  CAS  Google Scholar 

  28. R. Chen, X. Jiang, T. Zhang, Z. Leng, W. Yang, C. Li, H. Liu, C. Li, S. Li, L. Liu, H. Lin, F. Zeng, Z. Su, Study on energy transfer mechanism and optical properties of LiLaSiO4: Dy3+, Tb3+ phosphors with excellent thermal stability and color tunability. J. Lumin. 251, 119168 (2022). https://doi.org/10.1016/j.jlumin.2022.119168

    Article  CAS  Google Scholar 

  29. S. Wu, P. Xiong, Q. Liu, Y. Xiao, Y. Sun, E. Song, Y. Chen, Self-activated tungstate phosphor for near-infrared light-emitting diodes. Adv. Opt. Mater. (2022). https://doi.org/10.1002/adom.202201718

    Article  Google Scholar 

  30. S.N. Ogugua, S.K.K. Shaat, H.C. Swart, O.M. Ntwaeaborwa, The influence of Dy3+ ions concentration and annealing on the properties of LaGdSiO5:Dy3+ nanophosphors. J. Lumin. 179, 154–164 (2016). https://doi.org/10.1016/j.jlumin.2016.06.056

    Article  CAS  Google Scholar 

  31. Q. Ni, J. Huo, J. Liu, H. Yan, Q. Zhu, J. Li, C. Long, Q. Wang, Efficient Ce3+ → Tb3+ energy transfer pairs with thermal stability and internal quantum efficiency close to unity. Inorg. Chem. Front. (2022). https://doi.org/10.1039/D2QI01967A

    Article  Google Scholar 

  32. K. Punia, G. Lal, S.K. Barbar, S.N. Dolia, P.A. Alvi, S. Dalela, S. Kumar, Oxygen vacancies mediated cooperative magnetism in ZnO nanocrystals: a d0 ferromagnetic case study. Vacuum 184, 109921 (2021). https://doi.org/10.1016/j.vacuum.2020.109921

    Article  CAS  Google Scholar 

  33. K. Punia, G. Lal, P.A. Alvi, S.N. Dolia, S. Dalela, K.B. Modi, S. Kumar, A comparative study on the influence of monovalent, divalent and trivalent doping on the structural, optical and photoluminescence properties of Zn0.96T0.04O (T: Li+, Ca2+& Gd3+) nanoparticles. Ceram. Int. 45, 13472–13483 (2019). https://doi.org/10.1016/j.ceramint.2019.04.048

    Article  CAS  Google Scholar 

  34. Y. Hua, J.S. Yu, Warm white emission of LaSr2F7:Dy3+/Eu3+ NPs with excellent thermal stability for indoor illumination. J. Mater. Sci. Technol. 54, 230–239 (2020). https://doi.org/10.1016/j.jmst.2020.02.066

    Article  CAS  Google Scholar 

  35. A. Mathur, P. Halappa, C. Shivakumara, Synthesis and characterization of Sm3+ activated La1−xGdxPO4 phosphors for white LEDs applications. J. Mater. Sci. Mater. Electron. 29, 19951–19964 (2018). https://doi.org/10.1007/s10854-018-0125-7

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (Grant No. 52002293), the Startup Fund (Grant No. 22QD28) and Graduated Innovative Fund of Wuhan Institute of Technology (Grant No. CX2022229) for supporting this work.

Author information

Authors and Affiliations

Authors

Contributions

ZW: prepared samples, characterized and writing-original draft; SZ: writing-original draft; PH, and ZH: provided Advice and financial support; ZZ: supervision, writing—review & editing. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Zhanhui Zhang.

Ethics declarations

Competing interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Research involving human and animal participants

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Zhou, S., Hu, P. et al. Energy transfer and optical properties of NaLaMgWO6:Dy3+, Tb3+ phosphors. J Mater Sci: Mater Electron 34, 2230 (2023). https://doi.org/10.1007/s10854-023-11574-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-11574-5

Navigation