Skip to main content
Log in

Sensitizing visible and near-infrared lanthanide (Ln3+ = Er3+/Ho3+) luminescence within a semiconductor Sr2CeO4 host

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The solid-state technique was used to effectively introduce trivalent lanthanide ions (Ln3+ = Er3+/Ho3+) into a semiconductor host material, Sr2CeO4. These lanthanide ions serve as excellent sensitizers in the near-ultraviolet (n-UV) range for Er3+/Ho3+ ions, leading to impressive emissions in the visible (VIS) and near-infrared (NIR) spectra. Subsequently, the phase formation and luminescent performance of this host sensitized VIS as well as NIR emitting phosphor are discussed in detail. Rietveld refinement analysis were performed in order to study the phase purity of the prepared Sr2CeO4 phosphor. Efficient energy transfer from the host is evident by a sharp decrease in the blue emission from Ce4+ with increasing Er3+/Ho3+ concentration. An additional support for energy transfer is that photoluminescence excitation (PLE) spectra of VIS and NIR luminescence from Er3+/Ho3+ are identical to those of broadband 472 nm emission from Ce4+. The excellent luminescence properties of Er3+/Ho3+ doped Sr2CeO4 phosphor’s host sensitized VIS and NIR emission suggests its prospective application in modern lasers and photonic technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

Data will be made available on reasonable request.

References

  1. G. Arpad Bergh, A. Craford, R. Duggal, Haitz, The promise and challenge of solid-state lighting. Phys. Today. 54, 42–47 (2001). https://doi.org/10.1063/1.1445547

    Article  Google Scholar 

  2. X. Wang, J. Shi, Z. Feng, M. Lia, C. Li, Visible emission characteristics from different defects of ZnS nanocrystals. Phys. Chem. Chem. Phys. 13, 4715–4723 (2011). https://doi.org/10.1039/C0CP01620A

    Article  CAS  Google Scholar 

  3. H. Cao, X. Qiu, Y. Liang, Q. Zhua, Room-temperature ultraviolet-emitting In2O3 nanowires. Appl. Phys. Lett. 83, 761–763 (2003). https://doi.org/10.1063/1.1596372

    Article  CAS  Google Scholar 

  4. H.J. Queisser, E.E. Haller, Defects in semiconductors: some fatal, some vital. Science 281, 945–950 (1998). https://doi.org/10.1126/science.281.5379.945

    Article  CAS  Google Scholar 

  5. W. Wang, Y. Pan, W. Zhang, X. Liu, L. Li, The size effect to O2––Ce4+ charge transfer emission and band gap structure of Sr2CeO4. Luminescence , 1–6 (2018). https://doi.org/10.1002/bio.3489

    Article  Google Scholar 

  6. E. Danielson, M. Devenney, D.M. Giaquinta, J.H. Golden, R.C. Haushalter, E.W. McFarland, D.M. Poojary, C.M. Reaves, W.H. Weinberg, X. Di Wu, X-ray powder structure of Sr2CeO4: a new luminescent material discovered by combinatorial chemistry. J. Mol. Struct. 470, 229–235 (1998). https://doi.org/10.1016/S0022-2860(98)00485-2

    Article  CAS  Google Scholar 

  7. L. Li, S. Zhou, S. Zhang, Investigation on charge transfer bands of Ce4+ in Sr2CeO4 blue phosphor. Chem. Phys. Lett. 453(4–6), 283–289 (2008). https://doi.org/10.1016/j.cplett.2008.01.033

    Article  CAS  Google Scholar 

  8. L. van Pieterson, S. Soverna, A. Meijerink, On the nature of the luminescence of Sr2CeO4. J. Electrochem. Soc. 147, 4688–4691 (2000). https://doi.org/10.1149/1.1394124

    Article  Google Scholar 

  9. Y.D. Jiang, F. Zhang, C.J. Summers, Z.L. Wang, Synthesis and properties of Sr2CeO4 blue emission powder phosphor for field emission displays. Appl. Phys. Lett. 74, 1677–1679 (1999). https://doi.org/10.1063/1.123652

    Article  CAS  Google Scholar 

  10. T. Masui, T. Chiga, N. Imanaka, G.Y. Adachi, Synthesis and luminescence of Sr2CeO4 fine particles. Mater. Res. Bull. 38, 17–24 (2003). https://doi.org/10.1016/S0025-5408(02)00998-4

    Article  CAS  Google Scholar 

  11. Q. Xiao, G. Dong, J. Qiu, Near-infrared luminescence enhancing by introducing alkali metal ions in Sr2CeO4:Yb3+. J. Lumin. 147, 163–167 (2014). https://doi.org/10.1016/j.jlumin.2013.11.005

    Article  CAS  Google Scholar 

  12. L.K. Marciniak, K. Elzbieciak-Piecka, K. Kniec, A. Bednarkiewicz, Assessing thermometric performance of Sr2CeO4 and Sr2CeO4:Ln3+ (Ln3+ = Sm3+, Ho3+, Nd3+, Yb3+) nanocrystals in spectral and temporal domain. Chem. Eng. J. 388, 124347 (2020). https://doi.org/10.1016/j.cej.2020.124347

    Article  CAS  Google Scholar 

  13. T. Grzyb, A. Szczeszak, J. Rozowska, J. Legendziewicz, S. Lis, Tunable luminescence of Sr2CeO4:M2+ (M = ca, mg, Ba, Zn) and Sr2CeO4:Ln2+ (Ln = Eu, Dy, Tm) Nanophosphors. J. Phys. Chem. C 116, 3219–3226 (2012). https://doi.org/10.1021/jp208015z

    Article  CAS  Google Scholar 

  14. T. Hirai, Y. Kawamura, Preparation of Sr2CeO4 blue phosphor particles and rare earth (Eu, Ho, Tm, or Er)-doped Sr2CeO4 phosphor particles, using an emulsion liquid membrane system  J. Phys. Chem. 108, 12763–12769 (2004). https://doi.org/10.1021/jp040220p

    Article  CAS  Google Scholar 

  15. M. Stefanski, D. Hreniak, W. Strek, Broadband white emission from Yb3+ doped Sr2CeO4 nanocrystals. Opt. Mater. 65, 95–98 (2017). https://doi.org/10.1016/j.optmat.2016.08.046

    Article  CAS  Google Scholar 

  16. S.K. Gupta, M. Sahu, K. Krishnan, M.K. Saxena, V. Natarajana, S.V. Godbole, Bluish white emitting Sr2CeO4 and red emitting Sr2CeO4:Eu3+ nanoparticles: optimization of synthesis parameters, characterization, energy transfer and photoluminescence. J. Mater. Chem. C 1, 7054–7063 (2013). https://doi.org/10.1039/c3tc31219d

    Article  CAS  Google Scholar 

  17. E.J. Viesca-Villanueva, D. Oliva, D. Chavez, C.M. Lopez-Badillo, C.M. Gomez-Solis, A.I. Mtz-Enriquez, C.R. Garcia, Effect of Yb3+ codopant on the upconversion and thermoluminescent emission of Sr2CeO4:Er3+, Yb3+ phosphors. J. Phys. Chem. Solids 145, 109547 (2020). https://doi.org/10.1016/j.jpcs.2020.109547

    Article  CAS  Google Scholar 

  18. o Viagin, A. Masalov, I. Ganina, Y. Malyukin, Mechanism of energy transfer in Sr2CeO4:Eu3+ phosphor. Opt. Mater. 31, 1808–1810 (2009). https://doi.org/10.1016/j.optmat.2008.12.038

    Article  CAS  Google Scholar 

  19. C. Zhang, S. Jianshe, Y. Xujie, L. Lude, W. Xin, Preparation, characterization and luminescence of Sm3+ or Eu3+ doped Sr2CeO4 by a modified sol–gel method. J. Rare Earths 28, 513–518 (2010). https://doi.org/10.1016/S1002-0721(09)60143-5

    Article  CAS  Google Scholar 

  20. T. Hirai, Y. Kawamura, Preparation of Sr2CeO4:Eu3+,Dy3+ white luminescence phosphor particles and thin films by using an emulsion liquid membrane system. J. Phys. Chem. B 109, 5569–5573 (2005). https://doi.org/10.1021/jp045390g

    Article  CAS  Google Scholar 

  21. R.A. Talewar, S. Mahamuda, A. Vyas, A.S. Rao, S.V. Moharil, Enhancement of 1.54 µm emission in Ce3+–Er3+ codoped Ca4Si2O7F2 phosphor. J. Alloys Compd. 775, 810–817 (2019). https://doi.org/10.1016/j.jallcom.2018.10.198

    Article  CAS  Google Scholar 

  22. W. Gao, J. Dong, J. Liu, X. Yan, Effective tuning of the ratio of red to green emission of Ho3+ ions in single LiLuF4 microparticle via codoping Ce3+ ions. J. Alloys Compd. 679, 1–8 (2016). https://doi.org/10.1016/j.jallcom.2016.03.049

    Article  CAS  Google Scholar 

  23. N. Yu, F. Liu, X. Li, Z. Pan, Near infrared long-persistent phosphorescence in SrAl2O4:Eu2+,Dy3+,Er3+ phosphors based on persistent energy transfer. Appl. Phys. Lett. 95, 231110 (2009). https://doi.org/10.1063/1.3272672

    Article  CAS  Google Scholar 

  24. X. Gao, W. Li, X. Yang, X. Jin, S. Xiao, Near-infrared emission of Er3+ sensitized by Mn4+ in Ca14Zn6Al10O35 matrix. J. Phys. Chem. C 119, 28090–28098 (2015). https://doi.org/10.1021/acs.jpcc.5b05825

    Article  CAS  Google Scholar 

  25. R.A. Talewar, S.K. Mahamuda, A.S. Rao, S.V. Moharil, Intense infrared emission of Er3+ in ZnB2O4 phosphors from energy transfer of Bi3+ by broadband UV excitation. J. Lumin. 244, 118706 (2022). https://doi.org/10.1016/j.jlumin.2021.118706

    Article  CAS  Google Scholar 

  26. J. Liao, Q. Wang, H.-R. Wen, H. Yuan, S.-J. Liu, J. Fu, B. Qiu, First observation of mutual energy transfer of Mn4+–Er3+ via different excitation in Gd2ZnTiO6:Mn4+/Er3+ phosphors. J. Mater. Chem. C 5, 9098–9105 (2017). https://doi.org/10.1039/C7TC03045B

    Article  Google Scholar 

  27. W. Gan, L. Cao, S. Gu, H. Lian, Z. Xia, J. Wang, Broad-band sensitization in Cr3+–Er3+ co-doped Cs2AgInCl6 double perovskites with 1.5 µm near-infrared emission. Chem. Mater. 35, 5291–5299 (2023). https://doi.org/10.1021/acs.chemmater.3c00446

    Article  CAS  Google Scholar 

  28. X.L. Yang, W.C. Wang, Q.Y. Zhang, BaF2 modified Cr3+/Ho3+ co-doped germanate glass for efficient 2.0 µm fiber lasers. J. Non-Cryst Solids 482, 147–153 (2018). https://doi.org/10.1016/j.jnoncrysol.2017.12.031

    Article  CAS  Google Scholar 

  29. R.D. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. A32, 751–767 (1976). https://doi.org/10.1107/S0567739476001551

    Article  CAS  Google Scholar 

  30. L.A. Rocha, M.A. Schiavon, C.S. Nascimento, L. Guimarães, M.S. Góes, A.M. Pires, C.O. Paiva-Santos, O.A. Serra, M.A. Cebim, M.R. Davolos, J.L. Ferrari, Sr2CeO4: electronic and structural properties. J. Alloys Compd. 608, 73–78 (2014). https://doi.org/10.1016/j.jallcom.2014.04.091

    Article  CAS  Google Scholar 

  31. R.A. Talewar, V.M. Gaikwad, P.K. Tawalare, S.V. Moharil, Sensitization of Er3+/Ho3+ visible and NIR emission in NaY(MoO4)2 phosphors. opt. Laser Technol. 115, 215–221 (2019). https://doi.org/10.1016/j.optlastec.2019.02.016

    Article  CAS  Google Scholar 

  32. T. Förster, Improvement of 1.53 mm band fluorescence and energy transfer in Er3+/Ce3+ codoped tellurite glasses. Ann. Phys. 437, 55–75 (1948). https://doi.org/10.1002/andp.19484370105

    Article  Google Scholar 

  33. D.L. Dexter, A theory of sensitized luminescence in solids. J. Chem. Phys. 21, 836–850 (1953). https://doi.org/10.1063/1.1699044

    Article  CAS  Google Scholar 

  34. J. Liu, X. Huang, H. Pan, X. Zhang, X. Fang, W. Li, H. Zhang, A. Huang, Z. Xiao, Broadband near infrared emission of Er3+/Yb3+ co-doped fluorotellurite glass. J. Alloys Compd. 866, 158568 (2021). https://doi.org/10.1016/j.jallcom.2020.158568

    Article  CAS  Google Scholar 

  35. J. Liao, L. Kong, M. Wang, Y. Sun, G. Gong, Tunable upconversion luminescence and optical temperature sensing based on non-thermal coupled levels of Lu3NbO7:Yb3+/Ho3+ phosphors. Opt. Mater. 98, 109452 (2019). https://doi.org/10.1016/j.optmat.2019.109452

    Article  CAS  Google Scholar 

  36. D.K. Sardar, S.R. Chandrasekharan, K.L. Nash, J.B. Gruber, A. Burger, U.N. Roy, Intensity analysis and crystal-field modeling of Ho3+ in KPb2Cl5 host. J. Appl. Phys. 103, 093112 (2008). https://doi.org/10.1063/1.2919765

    Article  CAS  Google Scholar 

  37. K. Suresh, C.K. Jayasankar, Conversion of blue-green photon into NIR photons in Ho3+/Yb3+ co-doped zinc tellurite glasses. J. Alloys Compd. 788, 1048–1055 (2019)

    Article  CAS  Google Scholar 

Download references

Funding

The authors declare they have no financial interest.

Author information

Authors and Affiliations

Authors

Contributions

RAT: data analysis and curation, characterization, writing—review & editing.  MRS: synthesis.  AKP: synthesis.  RUT: data analysis and curation.  VMG: data analysis and curation, characterization.

Corresponding author

Correspondence to Rupesh A. Talewar.

Ethics declarations

Conflict of interest

No potential conflict of interest was reported by the author(s).

Ethical statement

The authors declare here that the results submitted in the present work is original and not have been published earlier, nor under consideration by any other Journal for publication.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Talewar, R.A., Singh, M.R., Patel, A.K. et al. Sensitizing visible and near-infrared lanthanide (Ln3+ = Er3+/Ho3+) luminescence within a semiconductor Sr2CeO4 host. J Mater Sci: Mater Electron 34, 2209 (2023). https://doi.org/10.1007/s10854-023-11573-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-11573-6

Navigation