Skip to main content
Log in

Colossal negative electrocaloric effects in anti-ferroelectric PLZST bulk ferroelectrics for solid-sate refrigeration

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

A giant negative electro-caloric effect is present in PLZST ceramics over a wide range of temperatures at high fields for the new generation of the solid-state refrigeration process. The structural phase purity, ambiguity of phases, and coexistence of dual structural phase modulation over the substitution were identified clearly with the help of different standard models. The dielectric measurement demonstrates that the phase transition from the orthorhombic anti-ferroelectric phase (AFEO) to the tetragonal anti-ferroelectric phase (AFET) happens at 155 °C, while the phase transition from AFET to paraelectric (PE) occurs at 227 °C for PLZST(x = 0.91). The change in entropy (ΔS) and adiabatic temperature change (ΔT) was estimated at different fields from 100 to 225 kV/cm. The maximum ΔT = − 4.1 K was obtained at different electric fields over the region of phase transition anti-ferroelectric and ferroelectric phases. The estimation of the real ΔT values in the negative region compared with existing literature turns out to be good optimization for -life application of refrigeration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The authors declare that all the data generated or analyzed during this study are included in this manuscript.

References

  1. K.R. Kandula, S. Asthana, S.S.K. Raavi, Multifunctional Nd3+substituted Na0.5Bi0.5TiO3 as lead-free ceramics with enhanced luminescence, ferroelectric and energy harvesting properties. RSC Adv. 8, 15282 (2018)

    Article  CAS  Google Scholar 

  2. K.R. Kandula, S. Asthana, S.S.K. Raavi, Correlation between structural, ferroelectric and luminescence properties through compositional dependence of Nd3+ ion in lead free Na0.5Bi0.5TiO3. J. Alloys Compd. 732, 233 (2018)

    Article  CAS  Google Scholar 

  3. D. Yang, J. Gao, L. Shu, Y.X. Liu, J. Yu, Y. Zhang, J.F. Li, Lead-free antiferroelectric niobates AgNbO3 and NaNbO3 for energy storage applications. J. Mater. Chem. A 8(45), 23724–23737 (2020)

    Article  CAS  Google Scholar 

  4. A. Chauhan, S. Patel, R. Vaish, C.R. Bowen, Anti-ferroelectric ceramics for high energy density capacitors. Materials 8(12), 8009–8031 (2015)

    Article  Google Scholar 

  5. F. Ali, D. Zhou, M. Ali, H.W. Ali, M. Daaim, S. Khan, N. Sun, Recent progress on energy-related applications of HfO2-based ferroelectric and antiferroelectric materials. ACS Appl. Electron. Mater. 2(8), 2301–2317 (2020)

    Article  CAS  Google Scholar 

  6. K.R. Kandula, R. Yanamandra, S. Asthana, T. Patri, Observation of electrocaloric effect, thermal energy harvesting and energy storage density capabilities in Eu3+and Nb5+ co-substituted lead-free Na0.5Bi0.5TiO3ceramics. Curr. Appl. Phys. 20, 1066 (2020)

    Article  Google Scholar 

  7. K.R. Kandula, K. Banerjee, S.S.K. Raavi, S. Asthana, Enhanced electrocaloric effect and energy storage density of Nd-substituted 0.92NBT-0.08BT lead free ceramic. Phys. Status Solidi A 215, 1700915 (2018)

    Article  Google Scholar 

  8. Q. Peng, K.R. Kandula, Z. Xia, Y. Zhang, Y. Yang, Q. Zhang, Electric field induced phase transitions and electrocaloric effect of La3+ doped Pb(Zr, Sn, Ti) O3 ceramics. Ceram. Int. 47(10), 13939–13947 (2021)

    Article  CAS  Google Scholar 

  9. K.R. Kandula, T. Patri, S. Asthana, Nd3+ and Nb5+ co-substitution inducing a large electrocaloric response in Na0.5Bi0.5TiO3 lead-free ceramics. Phys. Status Solidi B 256(8), 1900001 (2019)

    Article  Google Scholar 

  10. R. Mnassri, M.M. Nofal, E. Dannoun, H. Rahmouni, Electric field dependence of electrocaloric performances in KTa0.57Nb0.43O3 single crystal. J. Mater. Sci. Mater. Electron. 33(14), 10939–10954 (2022)

    Article  CAS  Google Scholar 

  11. B. Allouche, H.J. Hwang, T.J. Yoo, B.H. Lee, A negative electrocaloric effect in an antiferroelectric zirconium dioxide thin film. Nanoscale 12(6), 3894–3901 (2020)

    Article  CAS  Google Scholar 

  12. F. Brivio, J.M. Frost, J.M. Skelton, A.J. Jackson, O.J. Weber, M.T. Weller, A. Walsh, Lattice dynamics and vibrational spectra of the orthorhombic, tetragonal, and cubic phases of methylammonium lead iodide. Phys. Rev. B 92(14), 144308 (2015)

    Article  Google Scholar 

  13. M.H. Park, H.J. Kim, Y.J. Kim, T. Moon, K.D. Kim, Y.H. Lee, H. Wang, Giant negative electrocaloric effects of Hf0.5Zr0.5O2 thin films. Adv. Mater. 28(36), 7956–7961 (2016)

    Article  CAS  Google Scholar 

  14. Y. Zhang, P. Liu, K.R. Kandula, W. Li, S. Meng, Y. Qin, G. Zhang, Achieving excellent energy storage density of Pb0.97La0.02(ZrxSn0.05Ti0.95-x)O3 ceramics by the B-site modification. J. Eur. Ceram. Soc. 41(1), 360–367 (2021)

    Article  Google Scholar 

  15. Y. Liu, J.F. Scott, B. Dkhil, Direct and indirect measurements on electrocaloric effect: recent developments and perspectives. Appl. Phys. Rev. 3(3), 031102 (2016)

    Article  Google Scholar 

  16. W.P. Cao, W.L. Li, X.F. Dai, T.D. Zhang, J. Sheng, Y.F. Hou, W.D. Fei, Large electrocaloric response and high energy-storage properties over a broad temperature range in lead-free NBT-ST ceramics. J. Eur. Ceram. Soc. 36(3), 593–600 (2016)

    Article  CAS  Google Scholar 

  17. V.A. Isupov, Ferroelectric and antiferroelectric perovskites PbB0.5B0.5O3. Ferroelectrics 289(1), 131–195 (2003)

    Article  CAS  Google Scholar 

  18. Y.C. Zhao, Q.X. Liu, X.G. Tang, Y.P. Jiang, B. Li, W.H. Li, X.B. Guo, Giant negative electrocaloric effect in anti-ferroelectric (Pb0.97La0.02)(Zr0.95Ti0.05)O3 ceramics. ACS Omega 4(11), 14650–14654 (2019)

    Article  CAS  Google Scholar 

  19. A. Grünebohm, Y.B. Ma, M. Marathe, B.X. Xu, K. Albe, C. Kalcher, C. Ederer, Origins of the inverse electrocaloric effect. Energy Technol. 6(8), 1491–1511 (2018)

    Article  Google Scholar 

  20. I. Ponomareva, S. Lisenkov, Bridging the macroscopic and atomistic descriptions of the electrocaloric effect. Phys. Rev. Lett. 108(16), 167604 (2012)

    Article  CAS  Google Scholar 

  21. F. Zhuo, Q. Li, J. Gao, Y. Ji, Q. Yan, Y. Zhang, W. Cao, Giant negative electrocaloric effect in (Pb, La)(Zr, Sn, Ti)O3antiferroelectrics near room temperature. ACS Appl. Mater. Interfaces 10(14), 11747–11755 (2018)

    Article  CAS  Google Scholar 

  22. Z. Xu, Z. Fan, X. Liu, X. Tan, Impact of phase transition sequence on the electrocaloric effect in Pb(Nb, Zr, Sn, Ti)O3 ceramics. Appl. Phys. Lett. 110(8), 082901 (2017)

    Article  Google Scholar 

  23. Y. Bai, G.P. Zheng, S.Q. Shi, Abnormal electrocaloric effect of Na0.5Bi0.5TiO3–BaTiO3 lead-free ferroelectric ceramics above room temperature. Mater. Res. Bull. 46(11), 1866–1869 (2011)

    Article  CAS  Google Scholar 

  24. M. Ye, T. Li, Q. Sun, Z. Liu, B. Peng, C. Huang, H. Huang, A giant negative electrocaloric effect in Eu-doped PbZrO3 thin films. J. Mater. Chem. C 4(16), 3375–3378 (2016)

    Article  CAS  Google Scholar 

  25. X. Zunping, Z. Fan, X. Liu, X. Tan, Impact of phase transition sequence on the electrocaloric effect in Pb(Nb, Zr, Sn, Ti)O3 ceramics. Appl. Phys. Lett. 110(8), 082901 (2017)

    Article  Google Scholar 

  26. R. Pirc, B. Rožič, J. Koruza, B. Malič, Z. Kutnjak, Negative electrocaloric effect in antiferroelectric PbZrO3. EPL (Europhysics Letters) 107(1), 17002 (2014)

    Article  Google Scholar 

  27. Y. Bai, G.P. Zheng, S.Q. Shi, Abnormal electrocaloric effect of Na0.5Bi0.5TiO3–BaTiO3 lead-free ferroelectric ceramics above room temperature. Mater. Res. Bull. 46(11), 1866–1869 (2011)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author A.A. Ansari thankful to the Researchers Supporting Project number (RSP2023R365) King Saud University, Riyadh, Saudi Arabia. One of the authors (RB) acknowledges the Rajeev Gandhi Memorial College of Engineering and Technology (Autonomous), for providing the infrastructure facilities.

Funding

There is no funding support.

Author information

Authors and Affiliations

Authors

Contributions

NCRB: Investigation and methodology, PVL: Data curation and writing draft, GR: Methodology and data curation, NNR: Methodology and data validation, AAA: Data validation and review and editing the manuscript, NRR: Data curation and methodology, GG: Investigation and fata curation, AKP: Data validation and review and editing the manuscript, KRK: Conceptualization, supervision, and review and writing the manuscript, RB: Conceptualization, supervision, and validation of the data.

Corresponding authors

Correspondence to Ajay Kumar Paliki, Kumara Raja Kandula or Rajasekhar Bhimireddi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Babu, N.C.R., Lakshmi, P.V., Ravi, G. et al. Colossal negative electrocaloric effects in anti-ferroelectric PLZST bulk ferroelectrics for solid-sate refrigeration. J Mater Sci: Mater Electron 34, 2134 (2023). https://doi.org/10.1007/s10854-023-11572-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-11572-7

Navigation