Skip to main content
Log in

Caffeine additive based nanoarchitectonics of methylammonium lead iodide (MAPbI3) perovskite solar cell device: investigations on charge carrier properties using AC impedance spectroscopy

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Caffeine (coffee powder) is introduced into methylammonium lead iodide (MAPbI3) to fabricate highly efficient and stable caffeine-additive based MAPbI3 perovskite solar cell device (PSC). Perovskite solar cells with caffeine additive ratios of 1, 3, 5, 10 wt% exhibit enhanced power conversion efficiency (PCE), short circuit current density (JSC), open circuit voltage (VOC), and fill factor when compared to pure MAPbI3. In particular, the 5 wt% caffeine-MAPbI3 perovskite solar cell device shows enhanced power conversion efficiency of 16.39% with a short circuit current density of 24.22 mA cm−2, an open circuit voltage of 1.09 V, and a fill factor of 61.78%. This is significantly higher than the PSC devices with 1, 3, 10 wt% caffeine-MAPbI3, and the pure MAPbI3 PSC device. The maximum power conversion efficiency observed for pure MAPbI3 is 10.31% with a short circuit current density of 17.07 mA cm−2, an open circuit voltage of 1.02 V, and a fill factor of 59.21%. The caffeine-MAPbI3 perovskite solar cell device shows 58% higher power conversion efficiency than MAPbI3. The caffeine-MAPbI3 PSC solar cell device retains 85% of its original efficiency over 30 days. The enhanced photovoltaic performances and stability for the caffeine-added MAPbI3 perovskite solar cell are due to low electrical resistance values and reduced non-radiative recombination pathways in the perovskite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

All data included in this study are available upon request by contact with the corresponding author.

References

  1. A. Matsushita, M. Yanagida, Y. Shirai, K. Miyano, Sol. Energy Mater. Sol. 220, 110854 (2021)

    Article  CAS  Google Scholar 

  2. P. Wang, Y. Zhao, T. Wang, Appl. Phys. Rev. 7, 031303 (2020)

    Article  CAS  Google Scholar 

  3. A.K. Tangra, M. Sharma, U.L. Zainudeen, G. Singh Lotey, J. Mater. Sci. Mater. Electron. 31, 13657 (2020)

    Article  CAS  Google Scholar 

  4. H.Q. Tan, X. Zhao, A. Jiao, E. Birgersson, H. Xue, Sol. Energy 231, 1092 (2022)

    Article  CAS  Google Scholar 

  5. A.W.Y. Ho-Baillie, J. Zheng, M.A. Mahmud, F.J. Ma, D.R. McKenzie, M.A. Green, Appl. Phys. Rev. 8, 041307 (2021)

    Article  CAS  Google Scholar 

  6. E.O. Shalenov, Y.S. Seitkozhanov, C. Valagiannopoulos, A. Ng, K.N. Dzhumagulova, A.N. Jumabekov, Sol. Energy Mater. Sol. 234, 111426 (2022)

    Article  CAS  Google Scholar 

  7. C. Liu, Y. Yang, K. Rakstys, A. Mahata, M. Franckevicius, E. Mosconi, R. Skackauskaite, B. Ding, K.G. Brooks, O.J. Usiobo, J.N. Audinot, H. Kanda, S. Driukas, G. Kavaliauskaite, V. Gulbinas, M. Dessimoz, V. Getautis, F. De Angelis, Y. Ding, S. Dai, P.J. Dyson, M.K. Nazeeruddin, Nat. Commun. 12, 6394 (2021)

    Article  CAS  Google Scholar 

  8. L. Lin, L. Yang, G. Du, X. Li, Y. Li, J. Deng, K. Wei, J. Zhang, ACS Appl. Energy Mater. (2023). https://doi.org/10.1021/acsaem.2c04120)

    Article  Google Scholar 

  9. P. Mariani, L. Najafi, G. Bianca, M.I. Zappia, L. Gabatel, A. Agresti, S. Pescetelli, A. Di Carlo, S. Bellani, F. Bonaccorso, ACS Appl. Mater. Interfaces 13, 22368 (2021)

    Article  CAS  Google Scholar 

  10. G. Yang, Z. Ren, K. Liu, M. Qin, W. Deng, H. Zhang, H. Wang, J. Liang, F. Ye, Q. Liang, H. Yin, Y. Chen, Y. Zhuang, S. Li, B. Gao, J. Wang, T. Shi, X. Wang, X. Lu, H. Wu, J. Hou, D. Lei, S.K. So, Y. Yang, G. Fang, G. Li, Nat. Photonics 15, 681 (2021)

    Article  CAS  Google Scholar 

  11. M. Li, B. Du, Y. Wu, S. Dai, L. Zheng, C. Gao, Y. Wang, D. Yun, Org. Electron. 98, 106293 (2021)

    Article  CAS  Google Scholar 

  12. D. Aidarkhanov, Z. Ren, C.K. Lim, Z. Yelzhanova, G. Nigmetova, G. Taltanova, B. Baptayev, F. Liu, S.H. Cheung, M. Balanay, A. Baumuratov, A.B. Djurišić, S.K. So, C. Surya, P.N. Prasad, A. Ng, Sol. Energy Mater. Sol. 215, 110648 (2020)

    Article  CAS  Google Scholar 

  13. Z. Zhao, J. Huang, Y. Cao, Z.Z. Sun, N. Cheng, S. Sun, H. Sun, S. You, Sol. Energy 207, 1165 (2020)

    Article  CAS  Google Scholar 

  14. X. Yin, Z. Song, Z. Li, W. Tang, Energy Environ. Sci. 13, 4057 (2020)

    Article  CAS  Google Scholar 

  15. W. Chen, Y. Zhu, J. Xiu, G. Chen, H. Liang, S. Liu, H. Xue, E. Birgersson, J.W. Ho, X. Qin, J. Lin, R. Ma, T. Liu, Y. He, A.M.C. Ng, X. Guo, Z. He, H. Yan, A.B. Djurišić, Y. Hou, Nat. Energy 7, 229 (2022)

    Article  CAS  Google Scholar 

  16. A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, J. Am. Chem. Soc. 131, 6050 (2009)

    Article  CAS  Google Scholar 

  17. T. Ghosh, P. Mane, B. Chakraborty, P.K. Sahoo, D. Pradhan, ACS Appl. Mater. Interfaces 15, 17994 (2023)

    Article  CAS  Google Scholar 

  18. Q. Chen, N. De Marco, Y. Yang, T. Bin Song, C.C. Chen, H. Zhao, Z. Hong, H. Zhou, Y. Yang, Nano Today 10, 355 (2015)

    Article  CAS  Google Scholar 

  19. P.K. Kung, M.H. Li, P.Y. Lin, Y.H. Chiang, C.R. Chan, T.F. Guo, P. Chen, Adv. Mater Interfaces 5, 1800882 (2018)

    Article  Google Scholar 

  20. Z. Gu, L. Zuo, T.T. Larsen-Olsen, T. Ye, G. Wu, F.C. Krebs, H. Chen, J. Mater. Chem. A 3, 24254 (2015)

    Article  CAS  Google Scholar 

  21. Y. Bai, X. Meng, S. Yang, Adv. Energy Mater. 8, 1701883 (2017)

    Article  Google Scholar 

  22. S.D. Stranks, G.E. Eperon, G. Grancini, C. Menelaou, M.J.P. Alcocer, T. Leijtens, L.M. Herz, A. Petrozza, H.J. Snaith, Science 342, 341 (2013)

    Article  CAS  Google Scholar 

  23. J.P. Correa-Baena, A. Abate, M. Saliba, W. Tress, T. Jesper Jacobsson, M. Grätzel, A. Hagfeldt, Energy Environ. Sci. 10, 710 (2017)

    Article  CAS  Google Scholar 

  24. N. Suresh Kumar, K. Chandra Babu Naidu, J. Mater. 7, 940 (2021)

    Google Scholar 

  25. L. Duan, Y. Chen, J. Jia, X. Zong, Z. Sun, Q. Wu, S. Xue, ACS Appl. Energy Mater. 3, 1672 (2020)

    Article  CAS  Google Scholar 

  26. V. Trifiletti, V. Roiati, S. Colella, R. Giannuzzi, L.D. Marco, A. Rizzo, M. Manca, A. Listorti, G. Gigli, ACS Appl. Mater. Interfaces 7, 4283 (2015)

    Article  CAS  Google Scholar 

  27. U.K. Thakur, P. Kumar, S. Gusarov, A.E. Kobryn, S. Riddell, A. Goswami, K.M. Alam, S. Savela, P. Kar, T. Thundat, A. Meldrum, S. Karthik, ACS Appl. Mater. Interfaces 12, 11467 (2020)

    Article  CAS  Google Scholar 

  28. F. Xia, Q. Wu, P. Zhou, Y. Li, X. Chen, Q. Liu, J. Zhu, S. Dai, Y. Lu, S. Yang, ACS Appl. Mater. Interfaces 7, 13659 (2015)

    Article  CAS  Google Scholar 

  29. Y. Bai, H. Yu, Z. Zhu, K. Jiang, T. Zhang, N. Zhao, S. Yang, H. Yan, J. Mater. Chem. A 3, 9098 (2015)

    Article  CAS  Google Scholar 

  30. M. Kim, G. Kim, T.K. Lee, I. Choi, H. Choi, Y. Jo, Y.J. Yoon, J.W. Kim, J. Lee, D. Huh, H. Lee, S.K. Kwak, J.Y. Kim, D.S. Kim, Joule 3, 2179 (2019)

    Article  CAS  Google Scholar 

  31. X. Hu, H. Wang, Y. Ying, M. Wang, C. Zhang, Y. Ding, H. Li, W. Li, S. Zhao, Z. Zang, J. Power Sources 480, 229073 (2020)

    Article  CAS  Google Scholar 

  32. T.W. Chen, S.N. Afraj, S.H. Hong, L.H. Chou, A. Velusamy, C.Y. Chen, Y. Ezhumalai, S.H. Yang, I. Osaka, X.F. Wang, M.C. Chen, C.L. Liu, ACS Appl. Energy Mater. 5, 4149 (2022)

    Article  CAS  Google Scholar 

  33. C.T. Lin, W. Xu, T.J. Macdonald, J. Ngiam, J.H. Kim, T. Du, S. Xu, P.S. Tuladhar, H. Kang, K. Lee, J.R. Durrant, M.A. Mclachlan, ACS Appl. Mater. Interfaces 13, 43505 (2021)

    Article  CAS  Google Scholar 

  34. C. Wang, Z. Zhu, G. Wang, X. Ding, Y. Chen, S. Xiao, X. Liu, X. Zhang, S. Wen, ACS Sustain. Chem. Eng. 10, 17318 (2022)

    Article  CAS  Google Scholar 

  35. E. Ugur, A.D. Sheikh, R. Munir, J.I. Khan, D. Barrit, A. Amassian, F. Laquai, ACS Energy Lett. 2, 1960 (2017)

    Article  CAS  Google Scholar 

  36. S. Collavini, A. Cabrera-Espinoza, J.L. Delgado, Macromolecule 54, 5451 (2021)

    Article  CAS  Google Scholar 

  37. P. Kumar, E. Vahidzadeh, U.K. Thakur, P. Kar, K.M. Alam, A. Goswami, N. Mahdi, K. Cui, G.M. Bernard, V.K. Michaelis, S. Karthik, J. Am. Chem. Soc. 141, 5415 (2019)

    Article  CAS  Google Scholar 

  38. Z. Li, J. Feng, J. Cao, J. Jin, Y. Zhou, D. Cao, Z. Liang, B. Zhu, M. Li, Z. Li, S. Wang, Energy Environ. Mater. 6, e12283 (2023)

    Article  CAS  Google Scholar 

  39. D.W. Kim, J. Choi, J. Byun, J.T. Kim, G.S. Lee, J.G. Kim, D. Kim, P. Boonmongkolras, P.F. McMillan, H.M. Lee, A.J. Clancy, B. Shin, S.O. Kim, ACS Appl. Mater. Interfaces 13, 61215 (2021)

    Article  CAS  Google Scholar 

  40. C.M. Ho, M.C. Wu, S.H. Chen, Y.H. Chang, T.H. Lin, M.H. Jao, S.H. Chan, W.F. Su, K.M. Lee, Sol. RRL 5, 2100257 (2021)

    Article  CAS  Google Scholar 

  41. A. Upadhyaya, C.M.S. Negi, A. Yadav, S.K. Gupta, A.S. Verma, Semicond. Sci. Technol. 33, 6 (2018)

    Article  Google Scholar 

  42. S. Butt, S.M.F. Hasan, M.M. Hassan, K.M. Alkharfy, S.H. Neau, Saudi Pharm. J. 27, 619 (2019)

    Article  Google Scholar 

  43. B.R. Singh, M.A. Wechter, Y. Hu, C. Lafontaine, Biochem. Educ 26, 243 (1998)

    Article  CAS  Google Scholar 

  44. R. Ruiz-Caro, M.D. Veiga-Ochoa, Molecules 14, 4370 (2009)

    Article  CAS  Google Scholar 

  45. S. Gozalzadeh, F. Nasirpouri, S. Il, Seok, Chem. Eng. J. 411, 128460 (2021)

    Article  CAS  Google Scholar 

  46. R. Wang, J. Xue, L. Meng, J.W. Lee, Z. Zhao, P. Sun, L. Cai, T. Huang, Z. Wang, Z.K. Wang, Y. Duan, J.L. Yang, S. Tan, Y. Yuan, Y. Huang, Y. Yang, Joule 3, 1464 (2019)

    Article  CAS  Google Scholar 

  47. H. Zhang, M. Tao, B. Gao, W. Chen, Q. Li, Q. Xu, S. Dong, Sci. Rep. 7, 8458 (2017)

    Article  Google Scholar 

  48. V.E. Madhavan, I. Zimmermann, A.A.B. Baloch, A. Manekkathodi, A. Belaidi, N. Tabet, M.K. Nazeeruddin, ACS Appl. Energy Mater. 3, 114 (2020)

    Article  CAS  Google Scholar 

  49. N. Liédana, A. Galve, C. Rubio, C. Téllez, J. Coronas, ACS Appl. Mater. Interfaces 4, 5016 (2012)

    Article  Google Scholar 

  50. D. Naveena, L. Thirumalaisamy, R. Dhanabal, K. Sethuraman, A.C. Bose, ACS Appl. Energy Mater. 3, 10550 (2020)

    Article  CAS  Google Scholar 

  51. X. Zhao, S. Wang, X. Shan, G. Meng, X. Fang, Cryst. Growth Des. 21, 5983 (2021)

    Article  CAS  Google Scholar 

  52. R. Fan, Y. Huang, L. Wang, L. Li, G. Zheng, H. Zhou, Adv. Energy Mater. 6, 1600460 (2016)

    Article  Google Scholar 

  53. B. Tiwari, T. Babu, R.N.P. Choudhary, Mater. Chem. Phys. 256, 123655 (2020)

    Article  CAS  Google Scholar 

  54. P. Ganguly, A.K. Jha, Phys. B Condens. Matter. 405, 3154 (2010)

    Article  CAS  Google Scholar 

  55. Y.K. Yadav, M.P.K. Sahoo, R.N.P. Choudhary, J. Alloys Compd. 490, 589 (2010)

    Article  CAS  Google Scholar 

  56. V.M. Mohan, W. Qiu, J. Shen, W. Chen, J. Polym. Res. 17, 143 (2010)

    Article  CAS  Google Scholar 

  57. S. Liu, S. Li, J. Wu, Q. Wang, Y. Ming, D. Zhang, Y. Sheng, Y. Hu, Y. Rong, A. Mei, H. Han, J. Phys. Chem. Lett. 10, 6865 (2019)

    Article  CAS  Google Scholar 

  58. M.K.A. Mohammed, M.S. Jabir, H.G. Abdulzahraa, S.H. Mohammed, W.K. Al-Azzawi, D.S. Ahmed, S. Singh, A. Kumar, S. Asaithambi, M. Shekargoftar, RSC Adv. 12, 20461 (2022)

    Article  CAS  Google Scholar 

  59. G.H. Kim, H. Jang, Y.J. Yoon, J. Jeong, S.Y. Park, B. Walker, I.Y. Jeon, Y. Jo, H. Yoon, M. Kim, J.B. Baek, D.S. Kim, J.Y. Kim, Nano Lett. 17, 6385 (2017)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Dr.RengasamyDhanabal(CSIRAwardNo:09/1001(0074)/2020-EMR-I) would like to thank the Council of Scientific and Industrial Research (CSIR), India for the financial assistance through the Research Associateship program.

Funding

Council of Scientific & Industrial Research (CSIR), Government of India (Award No:09/1001(0074)/2020-EMR-I).

Author information

Authors and Affiliations

Authors

Contributions

RD: conceptualization, methodology, investigation, visualization. methodology, writing original draft, carrying out measurements, and project administration. DPK: carrying out the I–V measurement. AM: resources. KM: carrying out the optical study; ACB: resources and editing. SRD: resources.

Corresponding author

Correspondence to Suhash Ranjan Dey.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 430.9 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dhanabal, R., Kasinathan, D., Mahalingam, A. et al. Caffeine additive based nanoarchitectonics of methylammonium lead iodide (MAPbI3) perovskite solar cell device: investigations on charge carrier properties using AC impedance spectroscopy. J Mater Sci: Mater Electron 34, 2205 (2023). https://doi.org/10.1007/s10854-023-11569-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-11569-2

Navigation