Skip to main content
Log in

Carbon quantum dots: organic–inorganic perovskite composites for optoelectronic applications

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this study, we focus on carbon quantum dots (CQDs) derived from L-Lysine using a microwave-assisted technique, which offers a rapid and straightforward route to generate CQDs smaller than 10 nm on average. We present a method for procuring dry CQDs powder, capable of dissolving in various solvents. To examine the influence of CQDs on the properties of organic–inorganic perovskite and the potential impact of DMA solvent on CQDs, we investigated the optical and electrical characteristics of both pure CQDs and CQDs combined with MAPbBr3 films within a temperature range from 89 to 293 K. Our findings reveal the presence of a positive temperature coefficient of resistivity in the temperature range of 90–290 K. Subsequently, we discuss the plausible mechanism responsible for charge carrier transport in these types of composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. X. Xu, R. Ray, Y. Gu, H.J. Ploehn, L. Gearheart, K. Raker, W.A. Scrivens, J. Am. Chem. 126(40), 12736–12737 (2004)

    Article  CAS  Google Scholar 

  2. T. Yuan, T. Meng, P. He, Y. Shi, Y. Li, X. Li, L. Fan, S. Yang, J. Mater. Chem. C 7, 6820–6835 (2019)

    Article  CAS  Google Scholar 

  3. B. Thangaraj, P.R. Solomon, S. Ranganathan, Curr. Pharm. Des. 25(13), 1455–1476 (2019)

    Article  CAS  Google Scholar 

  4. A.R. Nallayagari, E. Sgreccia, R. Pizzoferrato, M. Cabibbo, S. Kaciulis, E. Bolli, L. Pasquini, P. Knauth, M.L. Di Vona, J. Nanostruct. Chem. 12, 565–580 (2022)

    Article  CAS  Google Scholar 

  5. A. Kim, J.K. Dash, P. Kumar, R. Patel, A.C.S. Appl, Electron. Mater. 4(1), 27–58 (2022)

    Google Scholar 

  6. B. Vercelli, Coatings 11, 232 (2021)

    Article  CAS  Google Scholar 

  7. N.A.A. Nazri, N.H. Azeman, Y. Luo, A.A.A. Bakar, Opt. Laser Technol. 139, 106928 (2021)

    Article  CAS  Google Scholar 

  8. Y. Wang, A. Hu, J. Mater. Chem. C 2, 6921–6939 (2014)

    Article  CAS  Google Scholar 

  9. S.Y. Lim, W. Shen, Z. Gao, Chem. Soc. Rev. 44, 362–381 (2015)

    Article  CAS  Google Scholar 

  10. P. Devi, S. Saini, K.H. Kim, Biosens. Bioelectron. 141, 111158 (2019)

    Article  CAS  Google Scholar 

  11. M. Green, E. Dunlop, J. Hohl-Ebinger, M. Yoshita, N. Kopidakis, X. Hao, Prog. Photovolt. 29(1), 3–15 (2020)

    Article  Google Scholar 

  12. C.C. Boyd, R. Cheacharoen, T. Leijtens, M.D. McGehee, Chem. Rev. 119(5), 3418–3451 (2018)

    Article  Google Scholar 

  13. W. Hui, Y. Yang, Q. Xu, H. Gu, S. Feng, Z. Su, M. Zhang, J. Wang, X. Li, J. Fang, F. Xia, Y. Chen, X. Gao, W. Huang, Adv. Mater. 32(4), 1906374 (2019)

    Article  Google Scholar 

  14. X. Wu, L. Xie, K. Lin, J. Lu, K. Wang, W. Feng, B. Fan, P. Yin, Z. Wei, J. Mater. Chem. A. 7, 12236–12243 (2019)

    Article  CAS  Google Scholar 

  15. P. You, Z. Liu, Q. Tai, S. Liu, F. Yan, Adv. Mater. 27(24), 3632–3638 (2015)

    Article  CAS  Google Scholar 

  16. A. Badawi, S.S. Alharthi, N.Y. Mostafa, M.G. Althobaiti, T. Altalhi, Appl. Phys. 125, 858 (2019)

    Article  CAS  Google Scholar 

  17. C. Wang, T. Hu, Y. Chen, Y. Xu, Q. Song, A.C.S. Appl, Mater. Interfaces 11(25), 22332–22338 (2019)

    Article  CAS  Google Scholar 

  18. G.V. Nenashev, M.S. Istomina, I.P. Shcherbakov, A.V. Shvidchenko, V.N. Petrov, A.N. Aleshin, Phys. Solid State 63, 1276–1282 (2021)

    Article  CAS  Google Scholar 

  19. R.S. Kryukov, M.S. Istomina, G.V. Nenashev, E.V. Podkovyrina, A.N. Aleshin, ElConRus 27, 978–981 (2022)

    Google Scholar 

  20. G.V. Nenashev, M.S. Istomina, R.S. Kryukov, V.M. Kondratev, I.P. Shcherbakov, V.N. Petrov, V.A. Moshnikov, A.N. Aleshin, Molecules 27, 8000 (2022)

    Article  CAS  Google Scholar 

  21. Y. Choi, N. Thongsai, A. Chae, S. Jo, E.B. Kang, P. Paoprasert, S.Y. Park, I. In, J. Ind. Eng. Chem. 47, 329–335 (2017)

    Article  CAS  Google Scholar 

  22. A.N. Aleshin, I.P. Shcherbakov, I.N. Trapeznikova, V.N. Petrov, Phys. Solid State 59(12), 2486–2490 (2017)

    Article  CAS  Google Scholar 

  23. Y. Zeng, G. Lu, H. Wang, J. Du, Z. Ying, C. Liu, Sci. Rep. 4, 6684 (2014)

    Article  CAS  Google Scholar 

  24. M.M. Shehata, T.N. Truong, R. Basnet, H.T. Nguyen, D.H. Macdonald, L.E. Black, Sol. Energy Mat. Sol. Cells 251, 112167 (2023)

    Article  CAS  Google Scholar 

Download references

Funding

The authors did not receive support from any organization for the submitted work.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by GVN, RSK, MSI and PAA. The first draft of the manuscript was written by GVN, RSK, ANA and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Grigorii V. Nenashev.

Ethics declarations

Conflict of interest

The authors have no competing interests to declare that are relevant to the content of this article.

Ethical approval

The authors have seen all the Ethical Standards and will be supposed to follow them in the future.

Informed consent

The authors agree to participate in the publication.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nenashev, G.V., Kryukov, R.S., Istomina, M.S. et al. Carbon quantum dots: organic–inorganic perovskite composites for optoelectronic applications. J Mater Sci: Mater Electron 34, 2114 (2023). https://doi.org/10.1007/s10854-023-11566-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-11566-5

Navigation