Skip to main content
Log in

Large-area rod-coated indium–tin–oxide transparent conductive films for low-cost electronics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Transparent conductive oxide (TCO) films have significant applications in optoelectronic fields. In this study, we fabricated a large-area (> 3 × 7 cm2) indium–tin–oxide (ITO) film with rod coating strategy and low-temperature lightwave irradiation treatment. We investigated the crystallinity, morphology, and optoelectronic characteristics of ITO thin films using different indium chloride precursor concentrations. Results show that the optimal precursor concentration of 0.5 M allows the ITO films to have > 90% transmittance, < 16.4 Ω/sq sheet resistance, and a 2.39 × 10−2 Ω−1 figure of merit. These results are comparable or superior to those of small- or large-area ITO thin films prepared using the solution process. Overall, our findings pave the way for the fabrication of high-performance and large-area ITO transparent conductive films at low temperatures, facilitating potential applications in low-cost and large-scale TCO electronics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

All data used in this study are available from the author upon reasonable request.

References

  1. R.A. Afre, N. Sharma, M. Sharon, Rev. Adv. Mater. Sci. 53, 79 (2018). https://doi.org/10.1515/rams-2018-0006

    Article  CAS  Google Scholar 

  2. Z.W. Wang, C.N. Chen, K. Wu, H.N. Chong, H. Ye, Phys. Status Solidi Appl. Mater. Sci. (2019). https://doi.org/10.1002/pssa.201700794

    Article  Google Scholar 

  3. H.S. Jung, G.S. Han, N.G. Park, M.J. Ko, Joule 3, 1850 (2019). https://doi.org/10.1016/j.joule.2019.07.023

    Article  CAS  Google Scholar 

  4. D.J. Lipomi, B.C.K. Tee, M. Vosgueritchian, Z.N. Bao, Adv. Mater. 23, 1771 (2011). https://doi.org/10.1002/adma.201004426

    Article  CAS  Google Scholar 

  5. V.D. Tran, S.V.N. Pammi, B.J. Park, Y. Han, C. Jeon, S.G. Yoon, Nano Energy 65, 104018 (2019). https://doi.org/10.1016/j.nanoen.2019.104018

    Article  CAS  Google Scholar 

  6. S. Bok, H.J. Seok, Y.A. Kim et al., ACS Appl. Mater. Interfaces 13, 3463 (2021). https://doi.org/10.1021/acsami.0c20582

    Article  CAS  Google Scholar 

  7. Y. Zhu, Z.Z. Sun, Z. Yan, Z. Jin, J.M. Tour, ACS Nano 5, 6472 (2011). https://doi.org/10.1021/nn201696g

    Article  CAS  Google Scholar 

  8. H. Jiang, Y.N. Zhao, H. Ma et al., Opt. Express 31, 2208 (2023). https://doi.org/10.1364/oe.479098

    Article  CAS  Google Scholar 

  9. M.M.D. Kumar, H. Kim, J. Kim, J. Nanosci. Nanotechnol. 16, 4993 (2016). https://doi.org/10.1166/jnn.2016.12186

    Article  CAS  Google Scholar 

  10. A.N. Panckow, C. David, Vak. Forsch Prax. (Germany) 29, 21 (2017). https://doi.org/10.1002/vipr.201700652

    Article  CAS  Google Scholar 

  11. S.M. Yang, B.S. Sun, Y. Liu et al., Ceram. Int. 46, 6342 (2020). https://doi.org/10.1016/j.ceramint.2019.11.110

    Article  CAS  Google Scholar 

  12. L. Dong, G.S. Zhu, H.R. Xu et al., J. Mater. Sci. Mater. Electron. 30, 8047 (2019). https://doi.org/10.1007/s10854-019-01126-1

    Article  CAS  Google Scholar 

  13. Y. Meng, X.B. Xu, H. Li et al., Carbon 70, 103 (2014). https://doi.org/10.1016/j.carbon.2013.12.078

    Article  CAS  Google Scholar 

  14. J. Txintxurreta, E.G. Berasategui, R. Ortiz, O. Hernandez, L. Mendizabal, J. Barriga, Coatings (2021). https://doi.org/10.3390/coatings11010092

    Article  Google Scholar 

  15. L.G.S. Albano, M.H. Boratto, O. Nunes-Neto, C.F.O. Graeff, Org. Electron. 50, 311 (2017). https://doi.org/10.1016/j.orgel.2017.08.011

    Article  CAS  Google Scholar 

  16. Y.H. Cho, V. Raman, M. Beigtan, Y. Kim, H.K. Kim, ACS Appl. Electron. Mater. 3, 2953 (2021). https://doi.org/10.1021/acsaelm.1c00052

    Article  CAS  Google Scholar 

  17. L. Zhou, M.J. Yu, L.Q. Yao, W.Y. Lai, Adv. Eng. Mater. (2022). https://doi.org/10.1002/adem.202101558

    Article  Google Scholar 

  18. C. Ruan, Q.A. Sun, D.J. Xiao, H.Y. Li, G.D. Xia, S.M. Wang, Ceram. Int. 48, 12317 (2022). https://doi.org/10.1016/j.ceramint.2022.01.094

    Article  CAS  Google Scholar 

  19. Y.F. Lan, W.C. Peng, Y.H. Lo, J.L. He, Mater. Res. Bull. 44, 1760 (2009). https://doi.org/10.1016/j.materresbull.2009.03.007

    Article  CAS  Google Scholar 

  20. I. Madhi, W. Meddeb, B. Bouzid, M. Saadoun, B. Bessais, Appl. Surf. Sci. 355, 242 (2015). https://doi.org/10.1016/j.apsusc.2015.07.135

    Article  CAS  Google Scholar 

  21. S. Benramache, O. Belahssen, A. Guettaf, A. Arif, J. Semicond. 35, 042001 (2014). https://doi.org/10.1088/1674-4926/35/4/042001

    Article  CAS  Google Scholar 

  22. J.W. Kim, J. Choi, S.J. Hong, J.I. Han, Y.S. Kim, J. Korean Phys. Soc. 57, 1794 (2010). https://doi.org/10.3938/jkps.57.1794

    Article  CAS  Google Scholar 

  23. K. Qin, F.S. Mei, T.H. Yuan et al., J. Mater. Sci. Mater. Electron. 29, 7931 (2018). https://doi.org/10.1007/s10854-018-8843-4

    Article  CAS  Google Scholar 

  24. F.T. Nya, G.W. Ejuh, J.M.B. Ndjaka, Mater. Lett. 202, 89 (2017). https://doi.org/10.1016/j.matlet.2017.05.064

    Article  CAS  Google Scholar 

  25. C.Z. Chen, S.W. Zhu, W.Q. Zhang, Y. Li, C.B. Cai, Res. Phys. 7, 2588 (2017). https://doi.org/10.1016/j.rinp.2017.07.039

    Article  Google Scholar 

  26. S.H. Yu, L.H. Ding, C. Xue, L. Chen, W.F. Zhang, J. Non-cryst. Solids 358, 3137 (2012). https://doi.org/10.1016/j.jnoncrysol.2012.09.009

    Article  CAS  Google Scholar 

  27. M. Ahmed, A. Bakry, A. Qasem, H. Dalir, Opt. Mater. 113, 110866 (2021). https://doi.org/10.1016/j.optmat.2021.110866

    Article  CAS  Google Scholar 

  28. R. Ramanauskas, A. Iljinas, L. Marcinauskas et al., Coatings (2022). https://doi.org/10.3390/coatings12050670

    Article  Google Scholar 

  29. P.P. Murmu, A. Shettigar, S.V. Chong et al., J. Materiomics 7, 612 (2021). https://doi.org/10.1016/j.jmat.2020.10.015

    Article  Google Scholar 

  30. B.R. Lee, T.H. Lee, K.R. Son, T.G. Kim, J. Alloys Compd. 741, 21 (2018). https://doi.org/10.1016/j.jallcom.2018.01.122

    Article  CAS  Google Scholar 

  31. M. Misra, D.-K. Hwang, Y.C. Kim, J.-M. Myoung, T.I. Lee, Ceram. Int. 44, 2927 (2018). https://doi.org/10.1016/j.ceramint.2017.11.041

    Article  CAS  Google Scholar 

  32. L. Song, T. Schenk, E. Defay, S. Glinsek, Mater. Adv. 2, 700 (2021). https://doi.org/10.1039/d0ma00872a

    Article  CAS  Google Scholar 

  33. S.-G. Ban, K.-T. Kim, B.D. Choi et al., ACS Appl. Mater Interfaces 9, 26191 (2017). https://doi.org/10.1021/acsami.7b07528

    Article  CAS  Google Scholar 

  34. Y. Ren, X. Zhou, Q. Wang, G. Zhao, Ceram. Int 44, 3394 (2018). https://doi.org/10.1016/j.ceramint.2017.11.130

    Article  CAS  Google Scholar 

  35. H.S. Akkera, P. Sivakumar, Y. Bitla et al., Phys. B Condens. Matter. (2022). https://doi.org/10.1016/j.physb.2022.413839

    Article  Google Scholar 

Download references

Funding

This work was supported by the Natural Science Foundation of Shandong Province (No. ZR2020MF104 and ZR2019MF031). Major innovation project for integrating science, education & industry of Qilu University of Technology (Shandong Academy of Sciences) (No. 2022JBZ01-07).

Author information

Authors and Affiliations

Authors

Contributions

All authors made contributions to the planning and design of the study. HL and CR: preparation of ITO film, interpretation of the data, and article writing. QS and MR: characterizations of film properties. SW and GX: Initiation of the work, funding acquisition, and article editing and revising.

Corresponding authors

Correspondence to Sumei Wang or Guodong Xia.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, H., Ruan, C., Sun, Q. et al. Large-area rod-coated indium–tin–oxide transparent conductive films for low-cost electronics. J Mater Sci: Mater Electron 34, 2222 (2023). https://doi.org/10.1007/s10854-023-11565-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-11565-6

Navigation