Skip to main content
Log in

Optimizing the densification of BaCe0.2Zr0.7Y0.1O3-δ proton conducting electrolyte using Fe2O3, Mn2O3 and ZnO sintering aids

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The development of SOFCs aims to reduce the operating temperature of the cells, maintaining the same level of efficiency with protonic conduction electrolytes, as they have low activation energy. In this context, comprehending the properties of these materials and devising methods that facilitate the production of dense ceramics are crucial aspects of this research. To address these issues, we added Fe2O3, Mn2O3 and ZnO as sintering aids to investigate their influence on BaCe0.2Zr0.7Y0.1O3-δ obtained by Pechini method. The sintering occurred via liquid phase sintering, resulting in densities higher than 96%. The barium carbonate reminiscent from calcination reacted with Fe and Mn arising other phases, which were identified through X-ray diffraction (XRD) and scanning electronic microscopy (SEM). Conversely, the addition of ZnO did not result in additional phases. These unexpected phases affected directly the bulk conductivity and the activation energy for conduction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

The data that support the findings of this work are available on request from the corresponding author.

References

  1. W. Zhang, Y.H. Hu, Progress in proton-conducting oxides as electrolytes for low-temperature solid oxide fuel cells: from materials to devices. Energy Sci Eng (2021). https://doi.org/10.1002/ese3.886

    Article  Google Scholar 

  2. B. Singh, S. Ghosh, S. Aich, B. Roy, Low temperature solid oxide electrolytes (LT-SOE): a review. J. Power. Sources 339, 103–135 (2017). https://doi.org/10.1016/j.jpowsour.2016.11.019

    Article  CAS  Google Scholar 

  3. Y. Zhang, R. Knibbe, J. Sunarso et al., Recent progress on advanced materials for solid-oxide fuel cells operating below 500°C. Adv. Mater. 1700132, 1–33 (2017). https://doi.org/10.1002/adma.201700132

    Article  CAS  Google Scholar 

  4. J. Kim, S. Sengodan, S. Kim et al., Proton conducting oxides : a review of materials and applications for renewable energy conversion and storage. Renew. Sustain. Energy Rev. 109, 606–618 (2019). https://doi.org/10.1016/j.rser.2019.04.042

    Article  CAS  Google Scholar 

  5. H. Iwahara, T. Esaka, H. Uchida, N. Maeda, Proton conduction in sintered oxides and its application to steam electrolysis for hydrogen production. Solid State Ionics 4, 359–363 (1981)

    Article  Google Scholar 

  6. S. Ricote, N. Bonanos, G. Caboche, Water vapour solubility and conductivity study of the proton conductor BaCe(0.9–x)ZrxY0.1O(3–δ). Solid State Ionics 180, 990–997 (2009). https://doi.org/10.1016/j.ssi.2009.03.016

    Article  CAS  Google Scholar 

  7. L. Malavasi, C.A.J. Fisher, M.S. Islam, Oxide-ion and proton conducting electrolyte materials for clean energy applications: structural and mechanistic features. Chem. Soc. Rev. 39, 4370–4387 (2010). https://doi.org/10.1039/b915141a

    Article  CAS  Google Scholar 

  8. I.T. Bello, S. Zhai, Q. He et al., Materials development and prospective for protonic ceramic fuel cells. Int. J. Energy Res. 46, 2212–2240 (2022). https://doi.org/10.1002/er.7371

    Article  CAS  Google Scholar 

  9. F.J.A. Loureiro, N. Nasani, G.S. Reddy et al., A review on sintering technology of proton conducting BaCeO3-BaZrO3 perovskite oxide materials for protonic ceramic fuel cells. J. Power. Sources 438, 226991 (2019). https://doi.org/10.1016/j.jpowsour.2019.226991

    Article  CAS  Google Scholar 

  10. U. Aarthi, K.S. Babu, Grain boundary space charge modulation in BaZr0.8Y0.2-xMxO3−δ with transition metal (M= Ni Co, Fe, and Zn) co-doping. Int. J. Hydrogen Energy 45, 29356–29366 (2020). https://doi.org/10.1016/j.ijhydene.2020.07.207

    Article  CAS  Google Scholar 

  11. H.S. Soares, I. Antunes, F.J.A. Loureiro et al., Effect of the addition mechanism of ZnO sintering aid on densification, microstructure and electrical properties of Ba(Zr, Y)O3-δ proton-conducting perovskite. Int. J. Hydrogen Energy 46, 26466–26477 (2021). https://doi.org/10.1016/j.ijhydene.2021.05.109

    Article  CAS  Google Scholar 

  12. N. Nasani, Z. Shakel, F.J.A. Loureiro et al., Exploring the impact of sintering additives on the densification and conductivity of BaCe0.3Zr0.55Y0.15O3-δ electrolyte for protonic ceramic fuel cells. J. Alloys Compd. 862, 158640 (2021). https://doi.org/10.1016/j.jallcom.2021.158640

    Article  CAS  Google Scholar 

  13. H.W. Kim, J. Seo, J.H. Yu et al., Effect of cerium on yttrium-doped barium zirconate with a ZnO sintering aid: grain and grain boundary protonic conduction. Ceram. Int. 47, 32720–32726 (2021). https://doi.org/10.1016/j.ceramint.2021.08.168

    Article  CAS  Google Scholar 

  14. S. Likhittaphon, T. Pukkrueapun, P. Seeharaj et al., Effect of sintering additives on barium cerate based solid oxide electrolysis cell for syngas production from carbon dioxide and steam. Fuel Process. Technol. 173, 119–125 (2018). https://doi.org/10.1016/j.fuproc.2018.01.019

    Article  CAS  Google Scholar 

  15. Y. Huang, R. Merkle, J. Maier, Effects of NiO addition on sintering and proton uptake of Ba(Zr, Ce, Y)O 3−δ. J Mater Chem A (2021). https://doi.org/10.1039/d1ta02555d

    Article  Google Scholar 

  16. B. Wang, L. Bi, X.S. Zhao, Exploring the role of NiO as a sintering aid in BaZr0,1Ce0,7Y0,2O3-ẟ electrolyte for proton-conducting solid oxide fuel cells. J. Power. Sources 399, 207–214 (2018). https://doi.org/10.1016/j.jpowsour.2018.07.087

    Article  CAS  Google Scholar 

  17. Z.U.D. Babar, M.B. Hanif, J.T. Gao et al., Sintering behavior of BaCe0.7Zr01.Y0.2O3-δ electrolyte at 1150 °C with the utilization of CuO and Bi2O3 as sintering aids and its electrical performance. Int. J. Hydrogen Energy (2021). https://doi.org/10.1016/j.ijhydene.2021.12.075

    Article  Google Scholar 

  18. L. Gui, Y. Ling, G. Li et al., Enhanced sinterability and conductivity of BaZr0.3Ce0.5Y0.2O3−δ by addition of bismuth oxide for proton conducting solid oxide fuel cells. J. Power. Sources 301, 369–375 (2016). https://doi.org/10.1016/j.jpowsour.2015.10.029

    Article  CAS  Google Scholar 

  19. P. Babilo, S.M. Haile, Enhanced sintering of yttrium-doped barium zirconate by addition of ZnO. J. Am. Ceram. Soc. 88, 2362–2368 (2005). https://doi.org/10.1111/j.1551-2916.2005.00449.x

    Article  CAS  Google Scholar 

  20. S. Tao, J.T.S. Irvine, Conductivity studies of dense yttrium-doped BaZrO3 sintered at 1325°C. J. Solid State Chem. 180, 3493–3503 (2007). https://doi.org/10.1016/j.jssc.2007.09.027

    Article  CAS  Google Scholar 

  21. M. Amsif, D. Marrero-López, J.C. Ruiz-Morales et al., The effect of Zn addition on the structure and transport properties of BaCe0.9−xZrxY0.1O3−δ. J. Eur. Ceram. Soc. 34, 1553–1562 (2014). https://doi.org/10.1016/j.jeurceramsoc.2013.12.008

    Article  CAS  Google Scholar 

  22. Y. Zhang, Y. Yao, J. Ren et al., MnO2 as an effective sintering aid for difficult-to-sinter LiTaO3-based ceramics: densification and dielectric properties. J. Alloys Compd. (2020). https://doi.org/10.1016/j.jallcom.2020.154546

    Article  Google Scholar 

  23. T.S. Zhang, J. Ma, L.B. Kong et al., Iron oxide as an effective sintering aid and a grain boundary scavenger for ceria-based electrolytes. Solid State Ionics 167, 203–207 (2004). https://doi.org/10.1016/j.ssi.2004.01.006

    Article  CAS  Google Scholar 

  24. M. Hakim, J.H. Joo, C.Y. Yoo et al., Enhanced chemical stability and sinterability of refined proton-conducting perovskite: Case study of BaCe0.5Zr0.3Y0.2O3-δ. J. Eur. Ceram. Soc. 35, 1855–1863 (2015). https://doi.org/10.1016/j.jeurceramsoc.2014.11.033

    Article  CAS  Google Scholar 

  25. L. Ge, J. Jiao, Z. Zhu et al., A facile method to fabricate proton-conducting BaZr0·85Y0·15O3-δ electrolyte with a large grain size and high conductivity. Ceram. Int. 45, 24946–24952 (2019). https://doi.org/10.1016/j.ceramint.2019.08.202

    Article  CAS  Google Scholar 

  26. R.R. Chien, C.S. Tu, V.H. Schmidt et al., Synthesis and characterization of proton-conducting Ba(Zr0.8-XCexY0.2)O2.9 ceramics. Solid State Ionics 181, 1251–1257 (2010). https://doi.org/10.1016/j.ssi.2010.07.024

    Article  CAS  Google Scholar 

  27. N. Nasani, P.A.N. Dias, J.A. Saraiva, D.P. Fagg, Synthesis and conductivity of Ba(Ce, Zr, Y)O3-δ electrolytes for PCFCs by new nitrate-free combustion method. Int. J. Hydrogen Energy 38, 8461–8470 (2013). https://doi.org/10.1016/j.ijhydene.2013.04.078

    Article  CAS  Google Scholar 

  28. Y. Goto, T. Takada, Phase diagram of the system BaO-Fe2O3. J. Am. Ceram. Soc. 43, 150–153 (1960). https://doi.org/10.1111/j.1151-2916.1960.tb14330.x

    Article  CAS  Google Scholar 

  29. M. Balaguer, Y.J. Sohn, D. Kobertz et al., Characterization of Y and Mn co-substituted BaZrO3 ceramics: material properties as a function of the substituent concentration. Solid State Ionics 382, 115959 (2022). https://doi.org/10.1016/j.ssi.2022.115959

    Article  CAS  Google Scholar 

  30. C. Zhang, H. Zhao, N. Xu et al., Influence of ZnO addition on the properties of high temperature proton conductor Ba1.03Ce0.5Zr0.4Y0.1O3−δ synthesized via citrate–nitrate method. Int. J. Hydrogen Energy 34, 2739–2746 (2009). https://doi.org/10.1016/j.ijhydene.2009.01.061

    Article  CAS  Google Scholar 

  31. L.S. Hagy, K. Ramos, M.V. Gelfuso et al., Effects of ZnO addition and microwave sintering on the properties of BaCe0.2Zr0.7Y0.1O3-δ proton conductor electrolyte. Ceram. Int. 49, 17261–17270 (2023). https://doi.org/10.1016/j.ceramint.2023.02.092

    Article  CAS  Google Scholar 

  32. G.S. Reddy, R. Bauri, A novel route to enhance the sinterability and its effect on microstructure, conductivity and chemical stability of BaCe0.4Zr0.4Y0.2O3-δ proton conductors. Mater. Chem. Phys. 216, 250–259 (2018). https://doi.org/10.1016/j.matchemphys.2018.05.023

    Article  CAS  Google Scholar 

  33. J.H. Lee, S.M. Choi, J.H. Lee et al., Effect of sintering atmosphere on phase stability, and electrical conductivity of proton-conducting Ba(Zr0.84Y0.15Cu 0.01)O3-δ. Int. J. Hydrogen Energy 39, 7100–7108 (2014). https://doi.org/10.1016/j.ijhydene.2014.02.072

    Article  CAS  Google Scholar 

  34. A. Løken, T.S. Bjørheim, R. Haugsrud, The pivotal role of the dopant choice on the thermodynamics of hydration and associations in proton conducting BaCe0.9X0.1O3−δ (X = Sc, Ga, Y, In, Gd and Er). J Mater Chem A 3, 23289–23298 (2015). https://doi.org/10.1039/C5TA04932F

    Article  CAS  Google Scholar 

  35. Á. Triviño-Peláez, D. Pérez-Coll, J. Mosa et al., Enhanced proton conductivity and stability of Ba-deficient BaCe0.8Y0.2O3-δ. J. Power. Sources 493, 229691 (2021). https://doi.org/10.1016/j.jpowsour.2021.229691

    Article  CAS  Google Scholar 

  36. S. Nikodemski, J. Tong, R. O’Hayre, Solid-state reactive sintering mechanism for proton conducting ceramics. Solid State Ionics 253, 201–210 (2013). https://doi.org/10.1016/j.ssi.2013.09.025

    Article  CAS  Google Scholar 

  37. L.P. Wendler, K. Ramos, D.M.P.F. Souza, Investigation about the reason of limited grain growth of Y-doped barium zirconate. Ceram. Int. 45, 19120–19126 (2019). https://doi.org/10.1016/j.ceramint.2019.06.158

    Article  CAS  Google Scholar 

  38. T. Negas, R.S. Roth, Phase equilibria and structural relations in the system BaMnO3-x. J. Solid State Chem. 3, 323–339 (1971). https://doi.org/10.1016/0022-4596(71)90068-5

    Article  CAS  Google Scholar 

  39. F.J.A. Loureiro, D. Pérez-Coll, V.C.D. Graça et al., Proton conductivity in yttrium-doped barium cerate under nominally dry reducing conditions for application in chemical synthesis. J Mater Chem A 7, 18135–18142 (2019). https://doi.org/10.1039/c9ta04584h

    Article  CAS  Google Scholar 

  40. H. Wang, R. Peng, X. Wu et al., Sintering behavior and conductivity study of yttrium-doped BaCeO3-BaZrO3 solid solutions using ZnO additives. J. Am. Ceram. Soc. 92, 2623–2629 (2009). https://doi.org/10.1111/j.1551-2916.2009.03204.x

    Article  CAS  Google Scholar 

  41. S.M. Haile, D.L. West, J. Campbell, The role of microstructure and processing on the proton conducting properties of gadolinium-doped barium cerate. J. Mater. Res. 13, 1576–1595 (1998). https://doi.org/10.1557/JMR.1998.0219

    Article  CAS  Google Scholar 

  42. D. Gao, R. Guo, Structural and electrochemical properties of yttrium-doped barium zirconate by addition of CuO. J. Alloys Compd. 493, 288–293 (2010). https://doi.org/10.1016/j.jallcom.2009.12.082

    Article  CAS  Google Scholar 

  43. H. Sun, X. Guo, J. Li et al., Effect of grain size on the electrical performance of BaZr0.1Ce0.7Y0.1Yb0.1O3-ẟ solid electrolytes with addition of NiO. Ceram. Int. 45, 622–626 (2019). https://doi.org/10.1016/j.ceramint.2018.09.217

    Article  CAS  Google Scholar 

  44. J. Wallis, L. Urban, C. Grimmer et al., Structural and electrical properties of BaZr0.7Ce0.2Y0.1O3−δ proton conducting ceramic fabricated by spark plasma sintering. Solid State Ionics 345, 115118 (2020). https://doi.org/10.1016/j.ssi.2019.115118

    Article  CAS  Google Scholar 

  45. M. Amsif, D. Marrero-López, J.C. Ruiz-Morales et al., Effect of sintering aids on the conductivity of BaCe0.9Ln0.1O3−δ. J. Power. Sources 196, 9154–9163 (2011). https://doi.org/10.1016/j.jpowsour.2011.06.086

    Article  CAS  Google Scholar 

  46. A.K. Baral, Reduction in sintering temperature of stable proton conductor BaCe0.35Zr0.5Y0.15O3-δ prepared by sol–gel method and its transport properties. Solid State Ionics 272, 107–111 (2015). https://doi.org/10.1016/j.ssi.2015.01.005

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil (CAPES)—Finance Code 001; CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico Finance Code: 406915/2021-0; Fundação Araucária de Apoio ao Desenvolvimento Científico e Tecnológico do Estado do Paraná.

Author information

Authors and Affiliations

Authors

Contributions

FNV: Conceptualization, Methodology, Validation, Formal Analysis, Investigation, Resources, Data Curation, Writing—original draft. KR: Formal Analysis, Investigation, Validation, Writing—review & editing. ALC: Conceptualization, Funding Acquisition, Supervision, Project Administration. ASAC: Conceptualization, Funding Acquisition, Supervision, Project Administration.

Corresponding author

Correspondence to Kethlinn Ramos.

Ethics declarations

Competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Viechineski, F.N., Ramos, K., Chinelatto, A.L. et al. Optimizing the densification of BaCe0.2Zr0.7Y0.1O3-δ proton conducting electrolyte using Fe2O3, Mn2O3 and ZnO sintering aids. J Mater Sci: Mater Electron 34, 2165 (2023). https://doi.org/10.1007/s10854-023-11560-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-11560-x

Navigation