Skip to main content
Log in

Novel hollow urchin-like α/γ-MnO2 boost microwave absorption

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The synthesis of novel structural materials is one of the hot topics in advanced materials. Herein, the hollow urchin-like structure of manganese dioxide (MnO2) was synthesized via a one-step hydrothermal strategy, demonstrating exceptional microwave absorption properties. The multiphase MnO2 has a hollow urchin-like structure composed of α-MnO2 and γ-MnO2, which exhibits outstanding impedance matching characteristics and favorable attenuation abilities. In the frequency range of 2–18 GHz, the hollow urchin-like α/γ-MnO2 presents excellent microwave absorption with the minimum reflection loss (RLmin) of − 53.3 dB at 14.17 GHz with a thickness of only 1.9 mm, and the corresponding effective absorption bandwidth (EAB) can reach 5.45 GHz at the same thickness. Meanwhile, the hollow urchin-like α/γ-MnO2 shows a practical microwave absorption capacity of approximately with EAB of 4.97 GHz at the ultrathin thickness of 1.5 mm via adjusting absorbent concentration. This study confirms the exceptional performance of the material in terms of its microwave absorption, providing valuable insights for the development of environmentally friendly, cost-effective, and high-performance materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

Data will be made available on request.

References

  1. J.B. Yang, X.D. Zhou, W.J. James, S.K. Malik, C.S. Wang, Growth and magnetic properties of MnO2–δ nanowire microspheres. Appl. Phys. Lett. 85, 3160–3162 (2004)

    Article  CAS  Google Scholar 

  2. H.P. Zhu, B. Li, X.M. Liu, Y.Q. Qiao, Y.L. Lv, Y.F. Zheng, Z.Y. Li, Z.D. Cui, J. Shen, S.L. Wu, Interfacial Mo, W-Conjugated polarization, and Oxygen vacancies of MoO2/WO3 in enhanced microwave therapy for MRSA-Induced Osteomyelitis. ACS Nano. 16, 21098–21110 (2022)

    Article  CAS  Google Scholar 

  3. F.F. Hu, H. Nan, M.Q. Wang, Y. Lin, H.B. Yang, Y. Qiu, B. Wen, Construction of core-shell BaFe12O19@MnO2 composite for effectively enhancing microwave absorption performance. Ceram. Int. 47, 16579–16587 (2021)

    Article  CAS  Google Scholar 

  4. M.M. Zhang, A. Hassan, S. Mehrez, I. Mahariq, A.E. Anqi, I. Elbadawy, S. Alamri, Modulation of MoSe2 & MnFe2O4@MnO2 nano-architectures for microwave absorption properties via single and bilayer method. Ceram. Int. 49, 4713–4721 (2023)

    Article  CAS  Google Scholar 

  5. W. She, H. Bi, Z.W. Wen, Q.H. Liu, X.B. Zhao, J. Zhang, R.C. Che, Tunable microwave absorption frequency by aspect ratio of Hollow Polydopamine@alpha-MnO2 Microspindles studied by Electron Holography. ACS Appl. Mater. Interfaces. 8, 9782–9789 (2016)

    Article  CAS  Google Scholar 

  6. M.T. Qiao, X.F. Lei, Y. Ma, L.D. Tian, K.H. Su, Q.Y. Zhang, Dependency of tunable microwave absorption performance on morphology-controlled hierarchical shells for core-shell Fe3O4@MnO2 composite microspheres. Chem. Eng. J. 304, 552–562 (2016)

    Article  CAS  Google Scholar 

  7. T. Zhai, X.H. Lu, F.X. Wang, H. Xia, Y.X. Tong, MnO2 nanomaterials for flexible supercapacitors: performance enhancement via intrinsic and extrinsic modification. Nanoscale Horizons. 1, 109–124 (2016)

    Article  CAS  Google Scholar 

  8. Y.H. Cui, K. Yang, Y.T. Lyu, P. Liu, Q.Y. Zhang, B.L. Zhang, Hollow nitrogen-doped carbon nanofibers filled with MnO2 nanoparticles/nanosheets as high-performance microwave absorbing materials. Carbon. 196, 49–58 (2022)

    Article  CAS  Google Scholar 

  9. W. Guo, C. Yu, S.F. Li, Z. Wang, J.H. Yu, H.W. Huang, J.S. Qiu, Strategies and insights towards the intrinsic capacitive properties of MnO2 for supercapacitors: challenges and perspectives. Nano Energy. 57, 459–472 (2019)

    Article  CAS  Google Scholar 

  10. M.U. Khalid, M.F. Warsi, I. Shakir, M.F.A. Aboud, M. Shahid, S.S. Shar, S. Zulfiqar, Al3+/Ag1+ induced phase transformation of MnO2 nanoparticles from a to beta and their enhanced electrical and photocatalytic properties. Ceram. Int. 46, 9913–9923 (2020)

    Article  CAS  Google Scholar 

  11. V. Kumar, P. Saharan, A.K. Sharma, A. Umar, I. Kaushal, A. Mittal, Y. Al-Hadeethi, B. Rashad, Silver doped manganese oxide-carbon nanotube nanocomposite for enhanced dye-sequestration: isotherm studies and RSM modelling approach. Ceram. Int. 46, 10309–10319 (2020)

    Article  CAS  Google Scholar 

  12. T. Zhang, L.Y. Kong, Y.T. Dai, X.J. Yue, J. Rong, F.X. Qiu, J.M. Pan, Enhanced oils and organic solvents absorption by polyurethane foams composites modified with MnO2 nanowires. Chem. Eng. J. 309, 7–14 (2017)

    Article  CAS  Google Scholar 

  13. J.Z. Huang, Y.F. Dai, K. Singewald, C.C. Liu, S. Saxena, H.C. Zhang, Effects of MnO2 of different structures on activation of peroxymonosulfate for bisphenol a degradation under acidic conditions. Chem. Eng. J. 370, 906–915 (2019)

    Article  CAS  Google Scholar 

  14. J. Chen, H.M. Meng, Y. Tian, R. Yang, D. Du, Z.H. Li, L.B. Qu, Y.H. Lin, Recent advances in functionalized MnO2 nanosheets for biosensing and biomedicine applications. Nanoscale Horizons. 4, 321–338 (2019)

    Article  CAS  Google Scholar 

  15. B.B. Ding, P. Zheng, P.A. Ma, J. Lin, Manganese oxide nanomaterials: synthesis, properties, and theranostic applications. Adv. Mater. 32(10), 1905823 (2020)

    Article  CAS  Google Scholar 

  16. S. Park, Y.H. Lee, S. Choi, H. Seo, M.Y. Lee, M. Balamurugan, K.T. Nam, Manganese oxide-based heterogeneous electrocatalysts for water oxidation. Energy Environ. Sci. 13, 2310–2340 (2020)

    Article  CAS  Google Scholar 

  17. X.H. Wang, S.B. Ni, G. Zhou, X.L. Sun, F. Yang, J.M. Wang, D.Y. He, Facile synthesis of ultra-long alpha-MnO2 nanowires and their microwave absorption properties. Mater. Lett. 64, 1496–1498 (2010)

    Article  CAS  Google Scholar 

  18. D. Chen, Z.R. Nan, Layer-by-Layer Assembly of Polyelectrolytes on Urchin-like MnO2 for Extraction of Zn2+, Cu2+ and Pb2+ from Alkaline Solutions. Crystals 12(3), 358 (2022)

    Article  CAS  Google Scholar 

  19. L.Z. Chen, Y.J. Liu, X. Fang, Y. Cheng, Simple strategy for the construction of oxygen vacancies on alpha-MnO2 catalyst to improve toluene catalytic oxidation. J. Hazard. Mater. (2021). https://doi.org/10.1016/j.jhazmat.2020.125020

    Article  Google Scholar 

  20. T.T. Su, B.A. Zhao, F.Q. Han, B.B. Fan, R. Zhang, The effect of hydrothermal temperature on the crystallographic phase of MnO2 and their microwave absorption properties. J. Mater. Science-Materials Electron. 30, 475–484 (2019)

    Article  CAS  Google Scholar 

  21. W.B. Liu, X.Y. Zhang, Y.F. Huang, B.Z. Jiang, Z.W. Chang, C.J. Xu, Kang, beta-MnO2 with proton conversion mechanism in rechargeable zinc ion Battery. J. Energy Chem. 56, 365–373 (2021)

    Article  CAS  Google Scholar 

  22. M.M. Han, J.W. Huang, S.Q. Liang, L.T. Shan, X.S. Xie, Z.Y. Yi, Y.R. Wang, S. Guo, J. Zhou, Oxygen Defects in beta-MnO2 Enabling High-Performance Rechargeable Aqueous Zinc/Manganese Dioxide Battery. Iscience (2020). https://doi.org/10.1016/j.isci.2019.100797

    Article  Google Scholar 

  23. Y.H. Wang, M.Y. Liu, C.G. Hu, Y.J. Xin, D. Ma, M.C. Gao, H.J. Xie, Enhanced MnO2/peroxymonosulfate activation for phthalic acid esters degradation: regulation of oxygen vacancy. Chem. Eng. J. (2022). https://doi.org/10.1016/j.cej.2021.134048

    Article  Google Scholar 

  24. E. Saputra, S. Muhammad, H.Q. Sun, H.M. Ang, M.O. Tade, S.B. Wang, Different crystallographic one-dimensional MnO2 nanomaterials and their Superior performance in Catalytic Phenol Degradation. Environ. Sci. Technol. 47, 5882–5887 (2013)

    Article  CAS  Google Scholar 

  25. F. Zhang, H. Du, S.Y. Shang, M. Qaim, S. Bao, T.T. Su, R. Zhang, H.X. Lu, H.L. Wang, H.L. Xu, Fan, constructing gamma-MnO2 hollow spheres with tunable microwave absorption properties. Adv. Powder Technol. 31, 4642–4647 (2020)

    Article  CAS  Google Scholar 

  26. R.B. Rakhi, B. Ahmed, D. Anjum, H.N. Alshareef, Direct Chemical synthesis of MnO2 nanowhiskers on Transition Metal Carbide Surfaces for Supercapacitor Applications. ACS Appl. Mater. Interfaces. 8, 18806–18814 (2016)

    Article  CAS  Google Scholar 

  27. Q.X. Xie, G. Cheng, T. Xue, L.H. Huang, S.H. Chen, Y. Sun, M. Sun, H.Z. Wang, L. Yu, Alkali ions pre-intercalation of delta-MnO2 nanosheets for high-capacity and stable Zn-ion Battery. Mater. Today Energy (2022). https://doi.org/10.1016/j.mtener.2021.100934

    Article  Google Scholar 

  28. W.H. Yang, Z.A. Su, Z.H. Xu, W.N. Yang, Y. Peng, J.H. Li, Comparative study of alpha-, beta-, gamma- and delta-MnO2 on tolueneoxidation: oxygen vacancies and reaction intermediates. Appl. Catal. B-Environmental (2020). https://doi.org/10.1016/j.apcatb.2019.118150

    Article  Google Scholar 

  29. D.A. Kitchaev, H.W. Peng, Y. Liu, J.W. Sun, J.P. Perdew, G. Ceder, Energetics of MnO2 polymorphs in density functional theory. Phys. Rev. B. (2016). https://doi.org/10.1103/PhysRevB.93.045132

    Article  Google Scholar 

  30. E. Hayashi, Y. Yamaguchi, K. Kamata, N. Tsunoda, Y. Kumagai, F. Oba, M. Hara, Effect of MnO2 crystal structure on aerobic oxidation of 5-Hydroxymethylfurfural to 2,5-Furandicarboxylic acid. J. Am. Chem. Soc. 141, 890–900 (2019)

    Article  CAS  Google Scholar 

  31. L.L. Song, Y.P. Duan, Y.L. Cui, Z.Y. Huang, Fe-Doped MnO2 nanostructures for attenuation-impedance balance-boosted microwave absorptionACS Appl. Nano Mater (2022). https://doi.org/10.1021/acsanm.1c04410

    Article  Google Scholar 

  32. M. Zhang, L.B. Zhao, W.X. Zhao, T. Wang, L.Y. Yuan, Y.Y. Guo, Y.X. Xie, T.T. Cheng, A.L. Meng, Z.J. Li, Boosted electromagnetic wave absorption performance from synergistic induced polarization of SiCNWs@MnO2@PPy heterostructures. Nano. Res. (2022). https://doi.org/10.1007/s12274-022-5289-z

    Article  Google Scholar 

  33. S. Ndayiragije, Y.F. Zhang, Y.Q. Zhou, Z. Song, N. Wang, T. Majima, L.H. Zhu, Mechanochemically tailoring oxygen vacancies of MnO2 for efficient degradation of tetrabromobisphenol A with peroxymonosulfate. Appl. Catal. B-Environmental (2022). https://doi.org/10.1016/j.apcatb.2022.121168

    Article  Google Scholar 

  34. X.D. Xie, H.F. Cheng, Adsorption and desorption of phenylarsonic acid compounds on metal oxide and hydroxide, and clay minerals. Sci. Total Environ. (2021). https://doi.org/10.1016/j.scitotenv.2020.143765

    Article  Google Scholar 

  35. J.L. Wan, L. Zhou, H.P. Deng, F.L. Zhan, R.J. Zhang, Oxidative degradation of sulfamethoxazole by different MnO2 nanocrystals in aqueous solution. J. Mol. Catal. a-Chemical. 407, 67–74 (2015)

    Article  CAS  Google Scholar 

  36. Y.X. Wang, Y.B. Xie, H.Q. Sun, J.D. Xiao, H.B. Cao, S.B. Wang, 2D/2D nano-hybrids of gamma-MnO2 on reduced graphene oxide for catalytic ozonation and coupling peroxymonosulfate activation. J. Hazard. Mater. 301, 56–64 (2016)

    Article  CAS  Google Scholar 

  37. Y.M. Tu, G.Y. Shao, W.J. Zhang, J.J. Chen, Y.X. Qu, F. Zhang, S.C. Tian, Z.Y. Zhou, Z.Q. Ren, The degradation of printing and dyeing wastewater by manganese-based catalysts. Sci. Total Environ. (2022). https://doi.org/10.1016/j.scitotenv.2022.154390

    Article  Google Scholar 

  38. R.L. Wang, M. He, Y.M. Zhou, S.X. Nie, Y.J. Wang, W.Q. Liu, Q. He, W.T. Wu, X.H. Bu, X.M. Yang, Metal-organic frameworks self-templated cubic hollow Co/N/C@MnO2 composites for electromagnetic wave absorption. Carbon. 156, 378–388 (2020)

    Article  CAS  Google Scholar 

  39. R.J. Yang, Y.Y. Fan, R.Q. Ye, Y.X. Tang, X.H. Cao, Z.Y. Yin, Z.Y. Zeng, MnO2-Based materials for environmental applications. Adv. Mater. (2021). https://doi.org/10.1002/adma.202004862

    Article  Google Scholar 

  40. M. Qin, L.M. Zhang, H.J. Wu, Dielectric loss mechanism in electromagnetic wave absorbing materials. Adv. Sci. (2022). https://doi.org/10.1002/advs.202105553

    Article  Google Scholar 

  41. T. Zhu, S.C. Chang, Y.F. Song, M. Lahoubi, W. Wang, PVP-encapsulated CoFe2O4/rGO composites with controllable electromagnetic wave absorption performance. Chem. Eng. J. 373, 755–766 (2019)

    Article  CAS  Google Scholar 

  42. X.Y. Wang, T. Zhu, S.C. Chang, Y.K. Lu, W.B. Mi, W. Wang, 3D Nest-Like Architecture of Core-Shell CoFe2O4@1T/2H-MoS2 composites with tunable microwave absorption performance. ACS Appl. Mater. Interfaces. 12, 11252–11264 (2020)

    Article  CAS  Google Scholar 

  43. X.Y. Wang, Y.K. Lu, T. Zhu, S.C. Chang, W. Wang, CoFe2O4/N-doped reduced graphene oxide aerogels for high-performance microwave absorption. Chem. Eng. J. (2020). https://doi.org/10.1016/j.cej.2020.124317

    Article  Google Scholar 

  44. J. Qiao, X. Zhang, D.M. Xu, L.X. Kong, L.F. Lv, F. Yang, F.L. Wang, W. Liu, J.R. Liu, Design and synthesis of TiO2/Co/carbon nanofibers with tunable and efficient electromagnetic absorption. Chem. Eng. J. (2020). https://doi.org/10.1016/j.cej.2019.122591

    Article  Google Scholar 

  45. H.S. Liang, L.M. Zhang, H.J. Wu, Exploration of twin-modified grain boundary engineering in metallic copper predominated electromagnetic wave absorber. Small (2022). https://doi.org/10.1002/smll.202203620

    Article  Google Scholar 

  46. H.S. Liang, G. Chen, D. Liu, Z.J. Li, S.C. Hui, J.J. Yun, L.M. Zhang, H.J. Wu, Exploring the Ni 3d orbital unpaired electrons induced polarization loss based on Ni single atoms model absorber. Adv. Funct. Mater. (2023). https://doi.org/10.1002/adfm.202212604

    Article  Google Scholar 

  47. Z.C. Wu, H.W. Cheng, C. Jin, B.T. Yang, C.Y. Xu, K. Pei, H.B. Zhang, Z.Q. Yang, R.C. Che, Dimensional design and core-shell engineering of nanomaterials for electromagnetic wave absorption. Adv. Mater. (2022). https://doi.org/10.1002/adma.202107538

    Article  Google Scholar 

  48. Z.L. Hou, K.R. Du, Y.Q. Zhang, S. Bi, J.Y. Zhang, Nanoarchitectonics of MnO2 nanotubes as sea urchin-like aggregates for dielectric response and microwave absorption with a wide concentration domain. Nano Res (2022). https://doi.org/10.1007/s12274-022-5099-3

    Article  Google Scholar 

  49. T. Zhu, W. Shen, X.Y. Wang, Y.F. Song, W. Wang, Paramagnetic CoS2@MoS2 core-shell composites coated by reduced graphene oxide as broadband and tunable high-performance microwave absorbers. Chem. Eng. J. (2019). https://doi.org/10.1016/j.cej.2019.122159

    Article  Google Scholar 

  50. D. Lan, Y. Wang, Y.Y. Wang, X.F. Zhu, H.F. Li, X.M. Guo, J.N. Ren, Z.H. Guo, G.L. Wu, Impact mechanisms of aggregation state regulation strategies on the microwave absorption properties of flexible polyaniline. J. Colloid Interface Sci. 651, 494–503 (2023)

    Article  CAS  Google Scholar 

  51. D. Lan, H.J. Zhou, H.J. Wu, A polymer sponge with dual absorption of mechanical and electromagnetic energy. J. Colloid Interface Sci. 633, 92–101 (2023)

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Key Research and Development Program of China (Grant No. 2021YFB3501301) and the National Natural Science Foundation of China (Grant Nos. 51731001, 11805006, 52071009).

Author information

Authors and Affiliations

Authors

Contributions

TZ contributed toward data curation, formal analysis, investigation, and writing—original draft. RW contributed toward data curation, formal analysis, and writing—original draft. JY contributed toward project administration, resources, supervision, and writing—review & editing. CW contributed toward resources, supervision, and writing—review & editing. WW contributed toward project administration, resources, supervision, validation, writing—original draft, and writing—review & editing. WY contributed toward project administration, resources, supervision, validation, writing—original draft, and writing—review & editing.

Corresponding authors

Correspondence to Wei Wang or Wenyun Yang.

Ethics declarations

Competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 764.7 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, T., Wang, R., Yang, J. et al. Novel hollow urchin-like α/γ-MnO2 boost microwave absorption. J Mater Sci: Mater Electron 34, 2149 (2023). https://doi.org/10.1007/s10854-023-11553-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-11553-w

Navigation