Skip to main content
Log in

Nonlinear optical characteristics and optical limiting performance of copper nanoparticles embedded polystyrene nanocomposite foils for photonic application

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Copper (Cu) nanoparticles (< 50 nm) embedded PS/Cu composite foils were prepared via solution casting (ex-situ) technique for nonlinear optical (NLO) characterization. The crystalline nature of the nanocomposite foils was confirmed by XRD. Surface morphology, purity, and elemental composition were studied using FESEM micrographs with EDX and EDS mapping, respectively. The presence of vibrational modes of the functional groups is established by FTIR spectroscopy. Third-order NLO properties of PS/Cu nanocomposite foils were studied using a single beam Z-scan technique with a continuous diode laser of power ~ 200 mW at a wavelength of ~ 532 nm. The nonlinear optical parameters were obtained using Z-scan data in open and close aperture geometry that reveal two-photon-assisted reverse saturable absorption, and self-defocusing nonlinear refraction. Third-order nonlinear susceptibility (\({\chi }^{3}\)) were found to increase, by two orders of magnitude, from 5.205 × 10–7 to 2.25 × 10–5 (e.s.u), with the increase in nonlinear absorption coefficient (β), and nonlinear refraction coefficient (\({n}_{2}\)) from 0.82 × 10–3 to18.8 × 10–1 (cm/W), and −9.16 × 10–9 to −3.86 × 10–7 (cm2/W), respectively and also increases with the increase in wt % of CuNPs from 0 to 8 wt %. The second-order hyper-polarizability (\({\upgamma }_{\mathrm{h}}\)) lies in the range 1.525 × 10–26 to 9.284 × 10–25 (e.s.u). Optical limiting studies were also carried out by measuring the limiting threshold of these foils that reduced from 4.44 to 2.17 kJ/cm2 with increasing wt % CuNPs from 0 to 8 wt % CuNPs. The NLO properties of PS/Cu nanocomposite foils confirm to serve as a potential candidate for optical power limiting applications with continuous laser excitations at ~ 532 nm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

Data will be made available from the corresponding author on reasonable request.

References

  1. A.D. Pomogailo, V.N. Kestelman, Springer Series in Materials Science (SSMATERIALS), vol. 81 (Springer, Heidelberg, 2005)

  2. L. Nicolais, G. Carotenuto, Metal-Polymer Nanocomposites (Wiley, Hoboken, 2005)

  3. A. Heilmann, Polymer Films with Embedded Metal Nanoparticles, vol. 52 (Springer Science & Business Media, 2003)

  4. F. Faupel, V. Zaporojtchenko, T. Strunskus, M. Elbahr, Adv. Eng. Mater. 12, 1177–1190 (2010)

    Article  CAS  Google Scholar 

  5. P.H.C. Camargo, K.G. Satyanarayana, F. Wypych, Mater. Res. 12(1), 1 (2009)

    Article  CAS  Google Scholar 

  6. R. Shenhar, T.B. Norsten, V.M. Rotello, Adv. Mater. 17(6), 657 (2005)

    Article  CAS  Google Scholar 

  7. D.R. Paul, L.M. Robeson, Polymer 49(15), 3187 (2008)

    Article  CAS  Google Scholar 

  8. A. Lagashetty, A. Venkataraman, Resonance 10(7), 49 (2005)

    Article  CAS  Google Scholar 

  9. J. Bhattacharya, U. Choudhary, O. Biwach, P. Sen, A. Dasgupta, Nanomed. Nanotechnol. Biol. Med. 2, 191–199 (2006)

    Article  CAS  Google Scholar 

  10. P. Calvo, C. Remunan-Lopez, J.L. Villa-Jato, M.J. Alonso, J. Appl. Polym. Sci. 63, 125–132 (1997)

    Article  CAS  Google Scholar 

  11. S. Chandra, A. Kumar, Int. J. Appl. Biol. Pharm. Technol. 2(1), 78–85 (2011)

    Google Scholar 

  12. S. Ropers, Bending Behavior of Thermoplastic Composite Sheets (Springer Fach. Wies. GmbH, 2017) pp. 5–20

  13. H.M. Shanshool, M. Yahaya, W.M.M. Yunus, I.Y. Abdullah, J. Mater. Sci. Mater. Electron. 27(9), 9503–9513 (2016)

    Article  CAS  Google Scholar 

  14. Qais M. Al-Bataineh, Ahmad A. Ahmad, A.M. Alsaad, Ahmad D. Telfah, Heliyon 7(1), e05952 (2021)

    Article  CAS  Google Scholar 

  15. Omed Gh Abdullah, Shujahadeen B. Aziz, Mariwan A. Rasheed, Results Phys. 6, 1103–1108 (2016)

    Article  Google Scholar 

  16. A.A. Shaltout, N.Y. Mostafa, R.M. Mahani, S.I. Ahmed, M.A. Allam, E. Alzahrani, Z.K. Heiba, H.H. Wahba, J. Market. Res. 9(6), 14350–14359 (2020)

    CAS  Google Scholar 

  17. T.J. Alwan, Malays. Polym. J. 5(2), 204 (2010)

    Google Scholar 

  18. S. Kango, S. Kalia, A. Celli, J. Njuguna, Y. Habibi, R. Kumar, Prog. Polym. Sci. 38(8), 1232 (2013)

    Article  CAS  Google Scholar 

  19. A.S. Tuhaiwer, Inter. Lett. Chem. Phy. Astr. 68, 39–47 (2016)

    Article  Google Scholar 

  20. M. Barala, S.R. Maidur, D. Mohan, S. Sanghi, Phys. Scr. 97, 105501 (2022)

    Article  Google Scholar 

  21. M.S. Bahae, A.A. Said, E.W. Van Stryland, Opt. Lett. 14(17), 955–957 (1989)

    Article  Google Scholar 

  22. B.D. Hall, D. Zanchet, D. Ugarte, J. Appl. Crystallogr. 33, 6 (2000)

    Article  Google Scholar 

  23. A. Rahmati, A. Balouch Sirgani, M. Molaei, M. Karimipour, Eur. Phys. J. Plus 129, 1–7 (2014)

    Article  CAS  Google Scholar 

  24. Golam Murtaza Mirza, Md Mahamud Hasan. Tusher, Nazmus Sakib, M.D. Naymul Islam, J. Mater. Sci. 34, 1542 (2023)

    CAS  Google Scholar 

  25. O.F. Farag, Results Phys. 9, 91–99 (2018)

    Article  Google Scholar 

  26. R. Boyd, Non-linear Optics, 3rd edn. (Academic Press, Cambridge, 2008)

    Google Scholar 

  27. J.W. You, S.R. Bongu, Q. Bao, N.C. Panoiu, Nanophotonics 8(1), 63–97 (2019)

    Article  Google Scholar 

  28. S.R. Maidur, P.S. Patil, Opt. Mater. 84, 28–37 (2018)

    Article  CAS  Google Scholar 

  29. Y. Yassin, J. Mater. Sci. Mater. Electron. 34, 46 (2023)

    Article  CAS  Google Scholar 

  30. M.S. Bahae, A.A. Said, T.H. Wei, D.J. Hagan, E.W.V. Stryland, IEEE J. Quantum Electron. 26, 760–769 (1990)

    Article  Google Scholar 

  31. S.R. Maidur, J.R. Jahagirdar, P.S. Patil, T.S. Chia, C.K. Quah, Opt. Mater. 75, 580–594 (2018)

    Article  CAS  Google Scholar 

  32. D.M. Poonam, A. Purnima, M. Kumar, K.Y. Barala, Eur. Phys. J. D 75, 243 (2021)

    Article  CAS  Google Scholar 

  33. P. Rekha, G. Chakkaravarthi, R. Mohan Kumar, G. Vinitha, R. Kanagadurai, J. Mater. Sci. Mater. Electron. 30, 9471–9488 (2019)

    Article  CAS  Google Scholar 

  34. T. Sharma, M. Garg, Bull. Mater. Sci. 46(3), 122 (2023)

    Article  CAS  Google Scholar 

  35. Adel M El. Sayed, M.I.A. Abdel Maksoud, Said M. Kassem, A.S. Awed, J. Mater. Sci. 34, 1713 (2023)

    Google Scholar 

  36. M. Mehkoom, M. Faizan, S.M. Afzal, S. Ahmad, J. Mater. Sci. Mater. Electron. 32, 28750–28764 (2021)

    Article  CAS  Google Scholar 

  37. A. Ajami, T.U. Wien, W. Husinsky, R. Liska, N. Pucher, J. Opt. Soc. Am. B 27(11), 2290–2297 (2010)

    Article  CAS  Google Scholar 

  38. A.S. Reyna, C.B. de Araújo, Opt. Express 7659–7666(23), 6 (2015)

    Google Scholar 

Download references

Funding

No funding.

Author information

Authors and Affiliations

Authors

Contributions

MB: Investigation, Conceptualization, Visualization, Formal analysis, Writing-original draft, Methodology. DM: Supervision, Conceptualization, Resources, Validation, Review & editing. SS: Co-Supervision, Methodology, Resources, Review & editing. NG: Formal analysis, Data curation, Methodology. PSP: Formal analysis, Resources, Validation. BS: Visualization, P. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Monika Barala.

Ethics declarations

Competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper. It is further stated that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barala, M., Gummagol, N., Mohan, D. et al. Nonlinear optical characteristics and optical limiting performance of copper nanoparticles embedded polystyrene nanocomposite foils for photonic application. J Mater Sci: Mater Electron 34, 2233 (2023). https://doi.org/10.1007/s10854-023-11547-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-11547-8

Navigation