Skip to main content
Log in

Ferroelectric ZnSnS3 thin films: growth and measurement of photovoltaic properties

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The theoretically predicted ferroelectric ZnSnS3 film was successfully grown for the first time using spray pyrolysis technique. The trigonal structure of the films with x-ray diffraction peaks corresponding to (110), (211), (01-1), and (210) planes of ZnSnS3 were observed. The direct energy band gap (\(\sim\)2.62 eV) and an indirect gap (\(\sim\)1.63 eV) of the films were estimated from the optical reflectivity spectra, and a broad photoluminescence emission peak was detected at around 2.58 eV. A band diagram was proposed to explain the optical properties of the film. The PE measurement revealed that the grown ZnSnS3 films were ferroelectric with a saturated polarization value of 20.5 \(\upmu {\text{C}}/{\text{cm}}^{2}\). The Ni/ZnSnS3/FTO device shows a sizeable photovoltaic response with a maximum of 1.07 V (Voc) and 1.03 µA (Isc) under 532 nm light illumination with 14.92 mW/cm2 power density. The nature of the observed current–voltage characteristics curves of Ni/ZnSnS3/FTO device for two different polarization states was explained considering the formation of potential barriers at the Ni/ZnSnS3/FTO interfaces and its modulation by the polarization-induced depolarization field. The overall photovoltaic response of the Ni/ZnSnS3/FTO system was predominant by the depolarization field over the internal bias field due to the Schottky effect at the interfaces. The maximum responsivity value at zero-bias conditions for ZnSnS3films was \(1.45 {\upmu A}/{\text{W}}\).The ferroelectric ZnSnS3 could be a potential candidate for ferroelectric-based photodetector devices in the visible and near-infrared regions of the optical spectrum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data availability

Data may be available on request to the corresponding author.

References

  1. H. Huang, Ferroelectric photovoltaics. Nat. Photonics 4, 132–135 (2010)

    Article  Google Scholar 

  2. S.Y. Yang, J. Seidel, S.J. Byrnes, P. Shafer, C.-H. Yang, M.D. Rossell, P. Yu, Y.-H. Chu, J.F. Scott, J.W. Ager III., L.W. Martin, R. Ramesh, Above-bandgap voltages from ferroelectric photovoltaic devices. Nat. Nanotechnol. 5, 143–147 (2010)

    Article  CAS  Google Scholar 

  3. M. Ichiki, H. Furue, T. Kobayashi, R. Maeda, Y. Morikawa, T. Nakada, K. Nonaka, Photovoltaic properties of (Pb, La)(Zr, Ti)O3 films with different crystallographic orientations. Appl. Phys. Lett. 87, 222903 (2005)

    Article  Google Scholar 

  4. S. Song, D. Kim, H.M. Jang, B.C. Yeo, S.S. Han, C.S. Kim, J.F. Scott, β-CuGaO2 as a strong candidate material for efficient ferroelectric photovoltaics. Chem. Mater. 29, 7596–7603 (2017)

    Article  CAS  Google Scholar 

  5. T. Choi, S. Lee, Y.J. Choi, V. Kiryukhin, S.W. Cheong, Switchable ferroelectric diode and photovoltaic effect in BiFeO3. Science 324, 63–66 (2009)

    Article  CAS  Google Scholar 

  6. L. Pintilie, I. Vrejoiu, G. Le Rhun, M. Alexe, Short-circuit photocurrent in epitaxial lead zirconate-titanate thin films. J. Appl. Phys. 101, 064109 (2007)

    Article  Google Scholar 

  7. G. Zhang, H. Wu, G. Li, Q. Huang, C. Yang, F. Huang, F. Liao, J. Lin, New high Tc multiferroics KBiFe2O5 with narrow band gap and promising photovoltaic effect. Sci. Rep. 3, 1265 (2013)

    Article  Google Scholar 

  8. X. Yang, X. Su, M. Shen, F. Zheng, Y. Xin, L. Zhang, M. Hua, Y. Chen, V.G. Harris, Enhancement of photocurrent in ferroelectric films via the incorporation of narrow bandgap nanoparticles. Adv. Mater. 24, 1202 (2012)

    Article  CAS  Google Scholar 

  9. T. Omata, H. Nagatani, I. Suzuki, M. Kita, H. Yanagi, N. Ohashi, Wurtzite CuGaO2: a new direct and narrow band gap oxide semiconductor applicable as a solar cell absorber. J. Am. Chem. Soc. 136, 3378–3381 (2014)

    Article  CAS  Google Scholar 

  10. A.B. Swain, M. Rath, P.P. Biswas, M.S. RamachandraRao, P. Murugavel, Polarization controlled photovoltaic and self-powered photodetector characteristics in Pb-free ferroelectric thin film. APL Mater. 7, 011106 (2019)

    Article  Google Scholar 

  11. M. Qin, K. Yao, Y.C. Liang, High efficient photovoltaics in nanoscaled ferroelectric thin films. Appl. Phys. Lett. 93, 122904 (2008)

    Article  Google Scholar 

  12. M. Qin, K. Yao, Y.C. Liang, Photovoltaic mechanisms in ferroelectric thin films with the effects of the electrodes and interfaces. Appl. Phys. Lett. 95, 022912 (2009)

    Article  Google Scholar 

  13. I. Suzuki, H. Nagatani, M. Kita, Y. Iguchi, C. Sato, H. Yanagi, N. Ohashi, T. Omata, First-principles calculations of ternary wurtzite β-CuGaO2. J. Appl. Phys. 119, 095701 (2016)

    Article  Google Scholar 

  14. B. Kolb, A.M. Kolpak, First-principles design and analysis of an efficient, pb-free ferroelectric photovoltaic absorber derived from ZnSnO3. Chem. Mater. 27, 5899–5906 (2015)

    Article  CAS  Google Scholar 

  15. J. Son, G. Lee, M.H. Jo, H. Kim, H.M. Jang, Y.H. Shin, Heteroepitaxial ferroelectric ZnSnO3 thin film. J. Am. Chem. Soc. 131, 8386–8387 (2009)

    Article  CAS  Google Scholar 

  16. J.M. Wu, C. Xu, Y. Zhang, Z.L. Wang, Lead-free nanogenerator made from single ZnSnO3 micro belt. ACS Nano 6, 4335–4340 (2012)

    Article  CAS  Google Scholar 

  17. K.Y. Lee, D. Kim, J.H. Lee, T.Y. Kim, Unidirectional high-power generation via stress-induced dipole alignment from ZnSnO3 nanocubes/polymer hybrid piezoelectric nanogenerator. Adv. Func. Mater. 24, 37–43 (2014)

    Article  Google Scholar 

  18. R. Guo, R. Tian, D. Shi, H. Li, H. Liu, S-Doped ZnSnO3 nanoparticles with narrow band gaps for photocatalytic wastewater treatment. ACS Appl. Nano Mater. 2, 7755–7765 (2019)

    Article  CAS  Google Scholar 

  19. S. Mukherjee, T. Maitra, A. Nayak, S. Mukherjee, A. Pradhan, M.K. Mukhopadhyay, B. Satpati, S. Bhunia, Microstructural and light emission properties of ZnSnP2 thin film absorber: study of native defects. Mater. Chem. Phys. 204, 147–153 (2018)

    Article  CAS  Google Scholar 

  20. S. Sanna, S. Neufeld, M. Rusing, G. Berth, A. Zrenner, W.G. Schmidt, Raman scattering efficiency in LiTaO3 and LiNbO3 crystals. Phys. Rev. B 91, 224302 (2015)

    Article  Google Scholar 

  21. M.N. Popov, J. Spitaler, V.K. Veerapandiyan, E. Bousquet, J. Hlinka, M. Deluca, Raman spectra of fine-grained materials from first principles. npj Comput. Mater. 6, 121 (2020)

    Article  CAS  Google Scholar 

  22. X.-Y. Chen, J.-Q. Tan, K.-R. Su, J.-H. Yang, X.-F. Xu, G.-P. Luo, W.-L. Zhu, S.-M. Hu, G.-X. Lai, H. Ji, L.-T. Niu, First-principles study of R3c-MgSnX3 (X=O, S and Se) for photovoltaic and ferroelectric application. Phys. Lett. A 422, 127774 (2022)

    Article  CAS  Google Scholar 

  23. M. Benyoussef, S. Saitzek, N.S. Rajput, M. Courty, M.E. Marssi, M. Jouiad, Experimental and theoretical investigations of low-dimensional BiFeO3 system for photocatalytic applications. Catalysts 12, 215–218 (2022)

    Article  CAS  Google Scholar 

  24. B. Ofuonye, J. Lee, M. Yan, C. Sun, J.M. Juo, I. Ilesanmi, Electrical and microstructural properties of thermally annealed Ni/Au and Ni/Pt/Au Schottky contacts on AlGaN/GaN heterostructures. Semicond. Sci. Technol. 29, 095005–095015 (2014)

    Article  CAS  Google Scholar 

  25. M.G. Helander, M.T. Greiner, Z.B. Wang, W.M. Tang, Work function of fluorine-doped tin oxide. J. Vac. Sci. Technol. A 29, 011019 (2011)

    Article  Google Scholar 

  26. L.A. Burton, T.J. Whittles, D. Hesp, W.M. Linhart, J.M. Skelton, B. Hou, R.F. Webster, G. O’Dowd, C. Reece, D. Cherns, D.J. Fermin, T.D. Veal, V.R. Dhanak, A. Walsh, Electronic and optical properties of single crystal SnS2: an earth-abundant disulfide photocatalyst. J. Mater. Chem. A 4, 1312–1318 (2016)

    Article  CAS  Google Scholar 

  27. Y. Yang, S. Xue, S. Liu, J. Huang, J. Shen, Fabrication and characteristics of ZnS nanocrystals/polymer composite doped with tetraphenylbenzidine single layer structure light-emitting diode. Appl. Phys. Lett. 69, 377–379 (1996)

    Article  CAS  Google Scholar 

  28. R.R. Mehta, B.D. Silverman, J.T. Jacobs, Depolarization fields in thin ferroelectric films. J. Appl. Phys. 44, 3379–3385 (1973)

    Article  CAS  Google Scholar 

  29. J.R. Reitz, F.J. Milford, R.W. Christy, Foundations of Electromagnetic Theory, 3rd edn. (Narosa, India, 1986), p.428

    Google Scholar 

  30. C. Kittel, Introduction to Solid State Physics, 8th edn. (Wiley, India, 2012), p.405

    Google Scholar 

  31. D. Lee, S.H. Baek, T.H. Kim, J.G. Yoon, C.M. Folkman, C.B. Eom, T.W. Noh, Polarity control of carrier injection at ferroelectric/metal interfaces for electrically switchable diode and photovoltaic effects. Phys. Rev. B 84, 125305 (2011)

    Article  Google Scholar 

  32. Y. Yuan, Z. Xiao, B. Yang, J. Huang, Arising applications of ferroelectric materials in photovoltaic devices. J. Mater. Chem. A 2, 6027–6041 (2014)

    Article  CAS  Google Scholar 

  33. W. Ji, K. Yao, Y.C. Liang, Bulk photovoltaic effect at visible wavelength in epitaxial ferroelectric BiFeO3 thin films. Adv. Mater. 22, 1763–1766 (2010)

    Article  CAS  Google Scholar 

  34. K. Mistewicz, M. Nowak, D. Stróz, Ferroelectric-photovoltaic effect in SbSi nanowires. Nanomaterials 9, 580 (2019)

    Article  CAS  Google Scholar 

  35. S. Mukherjee, T. Maitra, A. Pradhan, S. Mukherjee, G. Manna, S. Bhunia, A. Nayak, Rapid responsive Mg/ZnSnP2/Sn photodetector for visible to near-infrared application. Sol. Energy Mater. Sol. Cells 189, 181–187 (2019)

    Article  CAS  Google Scholar 

  36. A. Kathirvel, A.U. Maheswari, S.K. Batabyal, M. Sivakumar, BiFeO3-thiourea/carbon heterostructure based self-powered white light photodetector. Mater. Lett. 284, 128906 (2021)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support from the Science and Engineering Research Board (SERB, DO No. CRG/2019/004571), New Delhi. The BL-13 beamline of Indus2 synchrotron radiation facility at RRCAT is highly acknowledged.

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

MM: Methodology, experimental data acquisition, conceptualization, and review. SB: Methodology, experimental data acquisition, conceptualization, and review. AN: Supervision, conceptualization, data acquisition methodology, writing, review, and editing.

Corresponding author

Correspondence to A. Nayak.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohsin, M., Bhunia, S. & Nayak, A. Ferroelectric ZnSnS3 thin films: growth and measurement of photovoltaic properties. J Mater Sci: Mater Electron 34, 2194 (2023). https://doi.org/10.1007/s10854-023-11545-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-11545-w

Navigation