Skip to main content
Log in

Effect of dopants in the HTL layer on photovoltaic properties in hybrid perovskite solar cells

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The performance of CH\(_{3}\)NH\(_{3}\)PbI\(_{3}\) based perovskite materials deposited on Al-doped ZnO film is correlated with carrier extraction, surface, and film qualities of the hole transporting layers(HTLs). Changing the surface properties of HTL with both EG and triton X-100 into PEDOT: PSS in the ratio of 2:1. This shows better conductivity, good film formation, higher hole mobility, and negligible hysteresis in halide perovskite-based solar cells. In this present work, 10% of efficiency has been achieved by adding co-dopants in PEDOT: PSS layer in the Al–ZnO/CH\(_{3}\)NH\(_{3}\)PbI\(_{3}\)/PEDOT: PSS heterostructure with a cost-effective method. Not only better hole extraction of PEDOT: PSS is observed after co-doped it with EG and triton X-100 but also higher efficiency is observed in the heterostructure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The datasets created and/or analyzed in the present study are available from the corresponding author upon affordable request.

References

  1. Yohan Ko, Yechan Kim, Seong Young Kong, Sakeerali Cheeran Kunnan, Yongseok Jun, Improved performance of sol-gel ZnO-based perovskite solar cells via TiCl\(_{4}\) interfacial modification. Sol. Energy Mater. Sol. Cells. 183, 157–163 (2018). https://doi.org/10.1016/j.solmat.2018.04.021

    Article  CAS  Google Scholar 

  2. M.A. Green, Thin-film solar cells: review of materials, technologies and commercial status. J. Mater. Sci.: MaterElectron 18, 15–19 (2007). https://doi.org/10.1007/s10854-007-9177-9

    Article  CAS  Google Scholar 

  3. A. Fakharuddin, R. Jose, T.M. Brown, F. Fabregat-Santiago, J. Bisquert, A perspective on the production of dye-sensitized solar modules. Energy Environ. Sci. 7, 3952–3981 (2014). https://doi.org/10.1039/C4EE01724B

    Article  CAS  Google Scholar 

  4. Abraha Tadese Gidey, Da-Wei. Kuo, Adane Desta Fenta, Chin-Ti. Chen, Chao-Tsen. Chen, First conventional solution sol-gel-prepared nano porous materials of nickel oxide for efficiency enhancing and stability extending MAPbI\(_{3}\) inverted perovskite solar cells. ACS Appl. Energy Mater. 4(7), 6486–6499 (2021). https://doi.org/10.1021/acsaem.1c00496

    Article  CAS  Google Scholar 

  5. Piyali Chatterjee, Amit K. Chakraborty, Metal organic framework derived Ca\(_{4}\)Fe\(_{9}\)O\(_{17}\)as photocatalyst for degradation of organic dyes. Mater. Lett. 284, 129034 (2021). https://doi.org/10.1016/j.matlet.2020.129034

    Article  CAS  Google Scholar 

  6. B. Walker, C. Kim, T.-Q. Nguyen, Small molecule solution-processed bulk heterojunction solar cells. Chem. Mater. 23, 470–482 (2011). https://doi.org/10.1021/cm102189g

    Article  CAS  Google Scholar 

  7. A. Al Ashouri, E. Köhnen, B. Li, A. Magomedov, H. Hempel et al., Monolithic perovskite/silicon tandem solar cell with \(>\)29% efficiency by enhanced hole extraction. Science 370(6522), 1300–1309 (2020). https://doi.org/10.1126/science.abd4016

    Article  CAS  Google Scholar 

  8. S. Gu, R. Lin, Q. Han, Y. Gao, H. Tan et al., Tin and mixed lead-tin halide perovskite solar cells: progress and their application in tandem solar cells. Adv. Mater. 32(27), 1907392 (2020). https://doi.org/10.1002/adma.201907392

    Article  CAS  Google Scholar 

  9. M. Green, E. Dunlop, J. Hohl-Ebinger, M. Yoshita, N. Kopidakis, X. Hao, Solar cell efficiency tables(version 57). Prog. Photovolt. Res. Appl. (2020). https://doi.org/10.1002/pip.3371

    Article  Google Scholar 

  10. X. Luo, T. Wu, Y. Wang, X. Lin, H. Su et al., Progress of all-perovskite tandem solar cells: the role of narrow-bandgap absorbers. Sci. China Chem. 64, 218–227 (2021). https://doi.org/10.1007/s11426-020-9870-4

    Article  CAS  Google Scholar 

  11. K. Xiao, R. Lin, Q. Han, Y. Hou, Z. Qin et al., All-perovskite tandem solar cells with 24.2% certifed efciency and area over 1cm\(^{2}\) using surface-anchoring zwitterionic antioxidant. Nat. Energy 5, 870–880 (2020). https://doi.org/10.1038/s41560-020-00705-5

    Article  CAS  Google Scholar 

  12. Y. Deng, C.H. Van Brackle, X. Dai, J. Zhao, B. Chen et al., Tailoring solvent coordination for high-speed, room-temperature blading of perovskite photovoltaic flms. Sci. Adv. 5(12), eaax7537 (2019). https://doi.org/10.1126/sciadv.aax7537

    Article  CAS  Google Scholar 

  13. A. Dualeh, N. Tetreault, T. Moehl, P. Gao, M.K. Nazeeruddin, M. Gr-tzel, Effect of annealing temperature on film morphology of organic-inorganic hybrid pervoskite solid-state solar cells. Adv. Funct. Mater. 24, 3250–3258 (2014). https://doi.org/10.1002/adfm.201304022

    Article  CAS  Google Scholar 

  14. Y. Chen, T. Chen, L. Dai, Layer-by-Layer Growth of CH\(_{3}\)NH\(_{3}\)PbI\(_{3-x}\)Cl\(_{x}\) for highly efficient planar heterojunction perovskite solar cells. Adv. Mater. 27, 1053–1059 (2015). https://doi.org/10.1002/adma.201404147

    Article  CAS  Google Scholar 

  15. C. Momblona, O. Malinkiewicz, C. Roldan-Carmona, A. Soriano, L. Gil-Escrig, E. Bandiello, M. Scheepers, E. Edri, H.J. Bolink, Efficient methylammonium lead iodide perovskite solar cells with active layers from 300 to 900 nm. APL Mater. 2, 081504 (2014). https://doi.org/10.1063/1.4890056

    Article  CAS  Google Scholar 

  16. W. Ke, G. Fang, Q. Liu, L. Xiong, P. Qin, H. Tao, J. Wang, H. Lei, B. Li, J. Wan, G. Yang, Y. Yan, Low-temperature solution-processed tin oxide as an alternative electron transporting layer for efficient perovskite solar cells. J. Am. Chem. Soc. 137(21), 6730–6733 (2015). https://doi.org/10.1021/jacs.5b01994

    Article  CAS  Google Scholar 

  17. D. Liu, T.L. Kelly, Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques. Nat. Photonics 8(2), 133–138 (2013). https://doi.org/10.1038/nphoton.2013.342

    Article  CAS  Google Scholar 

  18. K. Wang, Y. Shi, B. Li, L. Zhao, W. Wang, X. Wang, X. Bai, S. Wang, C. Hao, T. Ma, Amorphous inorganic electron-selective layers for efficient perovskite solar cells: feasible strategy towards room-temperature fabrication. Adv. Mater. 28(9), 1891–1897 (2016). https://doi.org/10.1002/adma.201505241

    Article  CAS  Google Scholar 

  19. S.S. Shin, W.S. Yang, J.H. Noh, J.H. Suk, N.J. Jeon, J.H. Park, J.S. Kim, W.M. Seong, S.I. Seok, High-performance flexible perovskite solar cells exploiting Zn\(_{2}\)SnO\(_{4}\) prepared in solution below 100\(^{0}\)C. Nat. Commun. 6, 7410 (2015). https://doi.org/10.1038/ncomms8410

    Article  CAS  Google Scholar 

  20. S. Wang, Y. Zhu, C. Wang, R. Ma, NH\(_{4}\)F as an interfacial modifier for high performance NiOx-based inverted perovskite solar cells. Org. Electron. 78, 105627 (2020). https://doi.org/10.1016/j.orgel.2020.105627

    Article  CAS  Google Scholar 

  21. Z. Li, B.H. Jo, S.J. Hwang, T.H. Kim, S. Somasundaram, E. Kamaraj, J. Bang, T.K. Ahn, S. Park, H.J. Park, Bifacial passivation of organic hole transport interlayer for NiOx-based p-i-n perovskite solar cells. Adv. Sci. 6, 1802163 (2019). https://doi.org/10.1002/advs.201802163

    Article  CAS  Google Scholar 

  22. Z. Zhu, Y. Bai, T. Zhang, Z. Liu, X. Long, Z. Wei, Z. Wang, L. Zhang, J. Wang, F. Yan, S. Yang, High-performance hole-extraction layer of sol-gel-processed NiO nanocrystals for inverted planar perovskite solar cells. Angew. Chem.Int. Ed. 53, 1–6 (2014). https://doi.org/10.1002/anie.201405176

    Article  CAS  Google Scholar 

  23. D. Koushik, M. Jost, A. Ducinskas, C. Burgess, V. Zardetto, C. Weijtens, M.A. Verheijen, W.M.M. Kessels, S. Albrecht, M. Creatore, Plasma-assisted atomic layer deposition of nickel oxide as hole transport layer for hybrid perovskite solar cells. J. Mater. Chem. C 7, 12532–12543 (2019). https://doi.org/10.1039/C9TC04282B

    Article  CAS  Google Scholar 

  24. A.M. Nardes, M. Kemerink, R.A.J. Janssen, J.A.M. Bastiaansen, N.M.M. Kiggen, B.M.W. Langeveld, A.J. van Breemen, M.M. de Kok, Microscopic understanding of the anisotropic conductivity of PEDOT:PSS thin films. Adv. Mater. 19, 1196–1200 (2007). https://doi.org/10.1002/adma.200602575

    Article  CAS  Google Scholar 

  25. W. Hong, Y. Xu, G. Lu, C. Li, G. Shi, Transparent graphene/PEDOT-PSS composite films as counter electrodes of dye-sensitized solar cells. Electrochem. Commun. 10, 1555–1558 (2008). https://doi.org/10.1016/j.elecom.2008.08.007

    Article  CAS  Google Scholar 

  26. C.K. Cho, W.J. Hwang, K. Eun, S.H. Choa, S.I. Na, H.K. Kim, Mechanical flexibility of transparent PEDOT:PSS electrodes prepared by gravure printing for flexible organic solar cells. Sol. Energy Mater. Sol. Cells. 19, 3269–3275 (2011). https://doi.org/10.1016/j.solmat.2011.07.009

    Article  CAS  Google Scholar 

  27. Y. Xia, J. Ouyang, PEDOT:PSS films with significantly enhanced conductivities induced by preferential solvation with cosolvents and their application in polymer photovoltaic cells. J. Mater. Chem. 21, 4927–4936 (2011). https://doi.org/10.1039/C0JM04177G

    Article  CAS  Google Scholar 

  28. Y. Hou, H. Zhang, W. Chen, S. Chen, C.O.R. Quiroz, H. Azimi, A. Osvet, G.J. Matt, E. Zeira, J. Seuring, N. Kausch-Busies, W. Lovenich, C.J. Brabec, Inverted, environmentally stable perovskite solar cell with a novel low-cost and water-free PEDOT hole-extraction Layer. Adv. Energy Mater. 5, 1500543 (2015). https://doi.org/10.1002/aenm.201500543

    Article  CAS  Google Scholar 

  29. K. Sun, S. Zhang, P. Li et al., Review on application of PEDOTs and PEDOT:PSS in energy conversion and storage devices. J. Mater. Sci.: Mater. Electron. 26, 4438–4462 (2015). https://doi.org/10.1007/s10854-015-2895-5

    Article  CAS  Google Scholar 

  30. Y. Xia, K. Sun, J. Chang, J. Ouyang, Effects of organic inorganic hybrid perovskite materials on the electronic properties and morphology of poly(3,4-ethylenedioxythiophene):poly-(styrenesulfonate) and the photovoltaic performance of planar perovskite solar cells. J. Mater. Chem. A 3, 15897–15904 (2015). https://doi.org/10.1039/C5TA03456F

    Article  CAS  Google Scholar 

  31. S. Zhang, Z. Yu, P. Li, B. Li, F.H. Isikgor, D. Du, K. Sun, Y. Xia, J. Ouyang, Poly(3,4-ethylenedioxythiophene):polystyrene sulfonate films with low conductivity and low acidity through a treatment of their solutions with probe ultrasonication and their application as hole transport layer in polymer solar cells and perovskite solar cells. Org. Electron. 32, 149–156 (2016). https://doi.org/10.1016/j.orgel.2016.02.024

    Article  CAS  Google Scholar 

  32. S.R. Jang et al., Voltage-enhancement mechanisms of an organic dye in high open-circuit voltage solid-state dye-sensitized solar cells. ACS Nano. 5, 8267–8274 (2011). https://doi.org/10.1021/nn2029567

    Article  CAS  Google Scholar 

  33. A. Bera, S. Chattopadhyay, Violet-yellow light emission from a p-Si/Zn(Mg)O /ZnO/Zn(Fe)O Heterostructure. J. Electron. Mater. 51, 1615–1622 (2022). https://doi.org/10.1007/s11664-021-09381-x

    Article  CAS  Google Scholar 

  34. Hui Shi, Congcong Liu, Qinglin Jiang, Xu. Jingkun, Effective approaches to improve the electrical conductivity of PEDOT:PSS: a review. Adv.Electron. Mater. 1(4), 1500017 (2015). https://doi.org/10.1002/aelm.201500017

    Article  CAS  Google Scholar 

  35. Muhammad Ans, Javed Iqbal, Bertil Eliasson, Muhammad Jawwad Saif, Hafiz Muhammad Asif. Javed, Khurshid Ayub, Designing of non-fullerene 3D star-shaped acceptors for organic solar cells. J. Mol. Model. 25, 129 (2019). https://doi.org/10.1007/s00894-019-3992-9

    Article  CAS  Google Scholar 

  36. Muhammad Ans, Javed Iqbal, Ijaz Ahmad Bhatti, Khurshid Ayub, Designing dithienonaphthalene based acceptor materials with promising photovoltaic parameters for organic solar cells. RSC Adv. 9, 34496–34505 (2019). https://doi.org/10.1039/C9RA06345E

    Article  CAS  Google Scholar 

  37. Muhammad Ans, Khurshid Ayub, Shabbir Muhammad, Javed Iqbal, Development of fullerene free acceptors molecules for organic solar cells: a step way forward toward efficient organic solar cells. Comput. Theor. Chem. 1161, 26–38 (2019). https://doi.org/10.1016/j.comptc.2019.06.003

    Article  CAS  Google Scholar 

  38. Muhammad Ans, Khurshid Ayub, Ijaz Ahmad Bhatti, Javed Iqbal, Designing indacenodithiophene based non-fullerene acceptors with a donor-acceptor combined bridge for organic solar cells. RSC Adv. 9, 3605–3617 (2019). https://doi.org/10.1039/C8RA09292C

    Article  CAS  Google Scholar 

  39. Muhammad Ans, Javed Iqbal, Bertil Eliasson, Muhammad Jawwad Saif, Khurshid Ayub, Opto-electronic properties of non-fullerene fused-undecacyclic electron acceptors for organic solar cells. Comput. Mater. Sci. 159, 150–159 (2019). https://doi.org/10.1016/j.commatsci.2018.12.009

    Article  CAS  Google Scholar 

  40. Muhammad Ans, Mahalingavelar Paramasivam, Khurshid Ayub, Ralf Ludwig, Muhammad Zahid, Xiudi Xiao, Javed Iqbal, Designing alkoxy-induced based high performance near infrared sensitive small molecule acceptors for organic solar cells. J. Mol. Liq 305, 112829 (2020). https://doi.org/10.1016/j.molliq.2020.112829

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This experimental work was supported by Ramakrishna Mission Residential College under Vivekananda Centre For Research and financially supported by Govt.of West Bengal Science and Technology and Biotechnology Department, memo no.\(461(Sanc)/ST/P/S \& T/16G-19/2018\), West Bengal, India. We would like to thank Dr. A. Singha, Dept. of Physics, Bose Institute, Kolkata, India for providing the required facilities to perform this experimental work. We would also like to thank Dr. Sk Irsad Ali, Dept. of Physics, the University of Burdwan, WB, India for his valuable suggestions on experimental work.

Funding

This experimental work was supported by Ramakrishna Mission Residential College under Vivekananda Centre For Research and financially supported by Govt. of West Bengal Science and Technology and Biotechnology Department, memo no.\(461(Sanc)/ST/P/S \& T/16G-19/2018\), West Bengal, India.

Author information

Authors and Affiliations

Authors

Contributions

The contributions of all authors are as follows RHS: Participated in the data curation, experimentation, software, methodology, and writing of the original draft. AB: Participated in the software, reviewing, and analysis. SC: Participated in the supervision, resources, reviewing, methodology, and editing of the manuscript. JCM: Participated in the reviewing and analysis of SEM. SS: Participated in the XRD, reviewing. AKB: Participated in the reviewing and editing of this manuscript. All authors have completely studied this manuscript and finally suggest the published version of this manuscript.

Corresponding author

Correspondence to S. Chattopadhyay.

Ethics declarations

Competing interests

The authors claim that the studies are authentic and that they don’t have any struggle with the hobby.

Ethical approval

This article does no longer incorporates any research on human beings or animals.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sardar, R.H., Bera, A., Chattopadhyay, S. et al. Effect of dopants in the HTL layer on photovoltaic properties in hybrid perovskite solar cells. J Mater Sci: Mater Electron 34, 2138 (2023). https://doi.org/10.1007/s10854-023-11535-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-11535-y

Navigation