Skip to main content
Log in

Carbon nanomaterial-based composites as an active layer for optoelectronic device application: a comparative study

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Here, we prepared all-carbon ternary composites based on reduced graphene oxide (rGO), carbon nanotubes (CNTs), and Buckminsterfullerene (C60), with the aim of studying their optoelectronic properties in order to utilise them in the photoactive layer of optoelectronic devices. The facile solution processing method has been used to prepare the thin film of the as-prepared composite. The field emission scanning electron microscope (FESEM) study validates the formation of ternary composites. Two devices were fabricated using composite materials such as one comprising the photoactive layer of rGO/C60/single-walled type CNTs, and second having rGO/C60/multi-walled CNTs. The device containing multi-walled CNTs demonstrated greater optoelectronic performance compared to that of the device containing single-walled CNTs due to improved morphology and optical activity of sample. A better interface quality may be related to the higher optoelectronic performance since the multi-walled CNT-based composite device has a lower ideality factor, which suggests a better interface. According to the measured optoelectronic parameter, the active material rGO/C60/multi-walled CNTs could be applied to photodetector and optoelectronic device applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

All the data supporting the present findings of this investigation are included in the article.

References

  1. X.F. Zhang, X. Shao, J. Photochem. Photobiol A Chem. 278, 69 (2014)

    Article  CAS  Google Scholar 

  2. R. Elkins, N. Fierro, E. Flanagan, A. Haughton, M. Kasser, M. Stair, S. Wilson, (2006) Utilizing carbon nanotubes to improve efficiency of organic solar cells

  3. I. Arbouch, Y. Karzazi, B. Hammouti, Phys. Chem. News. 72, 73 (2014)

    Google Scholar 

  4. C. Dyer-Smith, J. Nelson, Y. Li, (2018) McEvoy’s Handb. Photovoltaics Fundam Appl. 567

  5. V. K. A., Int. J. Res. Eng. Technol. 03, 338 (2014)

  6. L. Dai, A.W.H. Mau, Adv. Mater. 13, 899 (2001)

    Article  CAS  Google Scholar 

  7. M. Sharma, C.M.S. Negi, P.A. Alvi, Indian J. Phys. (2023). https://doi.org/10.1007/s12648-022-02566-y

    Article  Google Scholar 

  8. O. Okhay, G. Gonçalves, C. Dias, J. Ventura, E.M.F. Vieira, L.M.V. Gonçalves, A. Tkach, J. Alloys Compd. 781, 196 (2019)

    Article  CAS  Google Scholar 

  9. A. Capezza, R.L. Andersson, V. Ström, Q. Wu, B. Sacchi, S. Farris, M.S. Hedenqvist, R.T. Olsson, ACS Omega. 4, 3458 (2019)

    Article  CAS  Google Scholar 

  10. S. Liu, P. Wang, C. Liu, Y. Deng, S. Dou, Y. Liu, J. Xu, Y. Wang, W. Liu, W. Hu, Y. Huang, Y. Chen, Small (2020). https://doi.org/10.1002/smll.202002856

    Article  Google Scholar 

  11. V.C. Tung, J. Huang, I. Tevis, F. Kim, J. Kim, C. Chu, S.I. Stupp, J. Huang, J. Am. Chem. Society (2011). https://doi.org/10.1021/ja1103734

    Article  Google Scholar 

  12. M. Sharma, P.A. Alvi, S.K. Gupta, C.M.S. Negi, Synth. Met. 281, 116892 (2021)

    Article  CAS  Google Scholar 

  13. C. Chen, S. Zhang, S. Wu, W. Zhang, H. Zhu, Z. Xiong, Y. Zhang, W. Chen, RSC Adv. 7, 35819 (2017)

    Article  CAS  Google Scholar 

  14. F.G. Granados-Martínez, L. Domratcheva-Lvova, N. Flores-Ramírez, L. García-González, L. Zamora-Peredo, M. de L. Mondragón-Sánchez, Mater. Res. 19, 133 (2017)

    Article  Google Scholar 

  15. X. Du, Z. Qin, Z. Li, Nanomaterials (2021). https://doi.org/10.3390/nano11061420

    Article  Google Scholar 

  16. F. Zabihi, Q. Chen, Y. Xie, M. Eslamian, Superlattices Microstruct. 100, 1177 (2016)

    Article  CAS  Google Scholar 

  17. P. Rathore, C. Mohan, S. Negi, A. Yadav, A. Singh, S.K. Gupta, Optik (Stuttg). 160, 1 (2018)

    Article  Google Scholar 

  18. G.A. Rance, D.H. Marsh, R.J. Nicholas, A.N. Khlobystov, Chem. Phys. Lett. 493, 19 (2010)

    Article  CAS  Google Scholar 

  19. Z. Wei, J. Zhang, X. He, S. Ma, A. Zhang, W. Cui, Y. Li, X. Cai, S. Zhang, J. Fan, Int. J. Electrochem. Sci. 12, 629 (2017)

    Article  CAS  Google Scholar 

  20. T.G. Vignesh Prabhu, J. Chandrasekaran, D. Thangaraju, P. Vivek, S. Gopi, J. Mater. Sci. Mater. Electron. 33, 17331 (2022)

    Article  CAS  Google Scholar 

  21. B.A. El-Sayed, W.A.A. Mohamed, H.R. Galal, M.A.M. Ahmed, Egypt. J. Pet. (2019). https://doi.org/10.1016/j.ejpe.2019.05.002

    Article  Google Scholar 

  22. P. Vivek, J. Chandrasekaran, V. Balasubramani, A. Manimekalai, Surf. Interfaces (2023). https://doi.org/10.1016/j.surfin.2023.102689

    Article  Google Scholar 

  23. V. Yadav, H. Cheema, R.S. Maurya, S. Kumar, P.A. Alvi, M. Sharma, U. Kumar, Ionics (Kiel). 28, 5513 (2022)

    Article  CAS  Google Scholar 

  24. Ö.B. Mergen, E. Arda, Synth. Met. 269, 116539 (2020)

    Article  CAS  Google Scholar 

  25. R. Rajendran, L.K. Shrestha, K. Minami, M. Subramanian, R. Jayavel, K. Ariga, J. Mater. Chem. A 2, 18480 (2014)

    Article  CAS  Google Scholar 

  26. E.I. Bîru, H. Iovu, Raman Spectrosc. (2018). https://doi.org/10.5772/intechopen.73487

    Article  Google Scholar 

  27. P. Sharma, V. Bhalla, V. Dravid, G. Shekhawat, E. Jinsong-Wu, Senthil, Prasad, Sci. Rep 2(1), 877 (2012)

    Article  Google Scholar 

  28. B. Ma, R.D. Rodriguez, A. Ruban, S. Pavlov, E. Sheremet, Phys. Chem. Chem. Phys. 21, 10125 (2019)

    Article  CAS  Google Scholar 

  29. S. Vollebregt, R. Ishihara, F.D. Tichelaar, Y. Hou, C.I.M. Beenakker, Carbon N. Y. 50, 3542 (2012)

    Article  CAS  Google Scholar 

  30. X. Lin, Y. Xi, R. Zhao, J. Shi, N. Yan, RSC Adv. 7, 53847 (2017)

    Article  CAS  Google Scholar 

  31. R. Roy, A. Jha, D. Banerjee, N.S. Das, K.K. Chattopadhyay, AIP Adv. 3, 012115 (2013)

    Article  CAS  Google Scholar 

  32. Y. Gong, D. Li, Q. Fu, C. Pan, Prog Nat. Sci. Mater. Int. 25, 379 (2015)

    Article  CAS  Google Scholar 

  33. S.K. Abdel-Aal, A.S. Abdel-Rahman, W.M. Gamal, M. Abdel-Kader, H.S. Ayoub, A.F. El-Sherif, M.F. Kandeel, S. Bozhko, E.E. Yakimov, E.B. Yakimov, Acta Crystallogr. Sect. B Struct. Sci. Cryst. Eng. Mater. 75, 880 (2019)

    Article  CAS  Google Scholar 

  34. M.F. Kandeel, S.K. Abdel-Aal, A.F. El-Sherif, H.S. Ayoub, A.S. Abdel-Rahman, I.O.P. Conf, Ser. Mater. Sci. Eng. (2019). https://doi.org/10.1088/1757-899X/610/1/012063

    Article  Google Scholar 

  35. B.R.C. de Menezes, F.V. Ferreira, B.C. Silva, E.A.N. Simonetti, T.M. Bastos, L.S. Cividanes, G.P. Thim, J. Mater. Sci. 53, 14311 (2018)

    Article  Google Scholar 

  36. V. Ţucureanu, A. Matei, A.M. Avram, Crit. Rev. Anal. Chem. 46, 502 (2016)

    Article  Google Scholar 

  37. N. Sharma, C.M. Singh Negi, M. Sharma, A. SinghVerma, S.K. Gupta, Opt. Mater. (Amst). 95, 109273 (2019)

    Article  CAS  Google Scholar 

  38. A. Yadav, A. Upadhyaya, S.K. Gupta, C.M. Singh, Negi, Phys. E Low-Dimensional Syst. Nanostructures. 124, 114351 (2020)

    Article  CAS  Google Scholar 

  39. B.V.R.S. Subramanyam, P.C. Mahakul, K. Sa, J. Raiguru, P. Mahanandia, J. Phys.  Mater. (2020). https://doi.org/10.1088/2515-7639/abbf44

    Article  Google Scholar 

  40. F. Ghasemi, Sci. Rep. 10, 1 (2020)

    Article  Google Scholar 

  41. M. Sharma, N. Sharma, P.A. Alvi, S.K. Gupta, C.M.S. Negi (2022) Opt. Mater. (Amst) 127

  42. J. Chaudhary, S.K. Gupta, A.S. Verma, C.M.S. Negi, J. Mater. Sci. 55, 4345 (2020)

    Article  CAS  Google Scholar 

  43. C.H. Ji, K.T. Kim, S.Y. Oh, RSC Adv. 8, 8302 (2018)

    Article  CAS  Google Scholar 

  44. N. Aslan, J. Mater. Sci. Mater. Electron. 32, 16927 (2021)

    Article  CAS  Google Scholar 

  45. S. Shafique, S. Yang, T. Iqbal, B. Cheng, Y. Wang, H. Sarwar, Y.T. Woldu, P. Ji, Sens. Actuators Phys. 332, 113073 (2021)

    Article  CAS  Google Scholar 

  46. S. Liu, X. Zhang, X. Gu, D. Ming , (2019) Biosens. Bioelectron. 143

  47. Y. Zhang, Y. Li, J. Sun, Q. You, K. Li, M. Zhu, T. Deng, J. Light Technol. 40, 149 (2022)

    Article  CAS  Google Scholar 

  48. C. Bonavolontà, A. Vettoliere, G. Falco, C. Aramo, I. Rendina, B. Ruggiero, P. Silvestrini, M. Valentino, Sci. Rep. 11, 1 (2021)

    Article  Google Scholar 

  49. M.S. Arnold, J.D. Zimmerman, C.K. Renshaw, X. Xu, R.R. Lunt, C.M. Austin, S.R. Forrest, Forrest (2009). https://doi.org/10.1021/nl901637u

    Article  Google Scholar 

  50. R. Lu, C. Christianson, B. Weintrub, J.Z. Wu, ACS Appl. Mater. Interfaces. 5, 11703 (2013)

    Article  CAS  Google Scholar 

  51. A. Upadhyaya, C.M.S. Negi, A. Yadav, S.K. Gupta, A.S. Verma, Semicond. Sci. Technol. 33, 65012 (2018)

    Article  Google Scholar 

  52. S. Bin Lim, C.H. Ji, I.S. Oh, S.Y. Oh, J. Mater. Chem. C 4, 4920 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank DST-STUTI, the Indian government, and the HRD ministry.

Funding

This research received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

MS contributed towards experiment and writing—original draft. CMSN contributed towards methodology and data analysis. PAA contributed towards resources and project administration. VY contributed towards obtaining experimental data. UK contributed towards conceptualization and writing—review & editing.

Corresponding authors

Correspondence to Minakshi Sharma or Upendra Kumar.

Ethics declarations

Competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, M., Negi, C.M.S., Alvi, P.A. et al. Carbon nanomaterial-based composites as an active layer for optoelectronic device application: a comparative study. J Mater Sci: Mater Electron 34, 2148 (2023). https://doi.org/10.1007/s10854-023-11529-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-11529-w

Navigation