Skip to main content
Log in

High-sensitivity and low-volume-based piezoelectric MEMS acceleration sensor using PiezoMUMPs

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The piezoelectric-based accelerometer gains popularity due to its capability to produce direct electrical output. In this work, two new meander architecture-based high-performance piezoelectric accelerometers have been proposed and their performance characteristics are extensively analyzed. The meander-based accelerometers are designed using PiezoMUMPs fabrication technology which uses 0.5 \(\mu\)m AlN piezo layer. The designed structures are having overall area of 1.08 mm \(\times\) 1.8 mm and 1.96 mm \(\times\) 1.8 mm with voltage sensitivity of 3.92 V/g and 1.8 V/g, respectively, in resonant region. The proposed meander architecture utilizes low volume and exhibits improved dynamic characteristics in terms of higher voltage sensitivity, lower-resonant frequencies, and better structural stability with respect to reported literature. Further, the energy-harvesting aspects for these meander-based structures have been explored, and the harvested power of the proposed structure is higher than the conventional structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

There are no associated datasets used in this manuscript. However, the data associated with this manuscript can be accessed upon reasonable request from the corresponding author.

References

  1. L. Gu, Microelectron. J. 42(2), 277 (2011)

    Article  CAS  Google Scholar 

  2. S.K. Kar, K.M. Swamy, B. Mukherjee, S. Sen, IEEE Trans. Instrum. Measurement64(10), 2738 (2015)

    Article  CAS  Google Scholar 

  3. B. Mukherjee, K. Swamy, S. Kar, S. Sen, in IEEE Technology Students’ Symposium (IEEE, 2011), pp. 253–258

  4. S.K. Kar, K. Swamy, B. Mukherjee, S. Sen, Microsyst. Technol. 19(1), 79 (2013)

    Article  Google Scholar 

  5. P. Li, Z. Zhang, W. Shen, C. Hu, W. Shen, D. Zhang, J. Mater. Chem. A9(8), 4716 (2021)

    Article  CAS  Google Scholar 

  6. X. Zhang, W. Wang, D. Zhang, Q. Mi, S. Yu, J. Mater. Sci.: Mater. Electron. 32, 7739 (2021)

    CAS  Google Scholar 

  7. D. Zhang, Z. Yang, P. Li, M. Pang, Q. Xue, Nano Energy 65, 103974 (2019)

    Article  CAS  Google Scholar 

  8. S. Shin, A. Daruwalla, M. Gong, H. Wen, F. Ayazi, in 2019 20th International Conference on Solid-State Sensors, Actuators and Microsystems & Eurosensors XXXIII (TRANSDUCERS & EUROSENSORS XXXIII) (IEEE, 2019), pp. 503–506

  9. D. Wang, D. Zhang, P. Li, Z. Yang, Q. Mi, L. Yu, Nano-micro Lett. 13, 1 (2021)

    Article  Google Scholar 

  10. D. Zhang, Q. Mi, D. Wang, T. Li, Sens. Actuators B: Chem. 339, 129923 (2021)

    Article  CAS  Google Scholar 

  11. P. Asthana, G. Khanna, Microelectron. J. 93, 104635 (2019)

    Article  Google Scholar 

  12. N. Saxena, V. Sharma, R. Sharma, K.K. Sharma, K.K. Jain, Silicon 14, 1–10 (2021)

    Google Scholar 

  13. Z.H. Chen, C.Y. Li, S.Y. Chu, C.C. Tsai, Y.H. Wang, H.Y. Kao, C.L. Wei, Y.H. Huang, P.Y. Hsiao, Y.H. Liu, IEEE Trans. Electron Devices 67(10), 4399 (2020)

    Article  CAS  Google Scholar 

  14. Y. Liu, B. Hu, Y. Cai, W. Liu, A. Tovstopyat, C. Sun, Sensors 21(2), 453 (2021)

    Article  Google Scholar 

  15. N. Gupta, A. Pandey, S.R.K. Vanjari, S. Dutta, Microsyst. Technol. 25(10), 3959 (2019)

    Article  CAS  Google Scholar 

  16. J. Yang, M. Zhang, Y. He, Y. Su, G. Han, C. Si, J. Ning, F. Yang, X. Wang, Micromachines 10(9), 589 (2019)

    Article  Google Scholar 

  17. Z. Shen, C.Y. Tan, K. Yao, L. Zhang, Y.F. Chen, Sens. Actuators A: Phys. 241, 113 (2016)

    Article  CAS  Google Scholar 

  18. C.C. Hindrichsen, N.S. Almind, S.H. Brodersen, R. Lou-Møller, K. Hansen, E.V. Thomsen, J. Electroceramics 25(2–4), 108 (2010)

    Article  CAS  Google Scholar 

  19. V. Sinatra, C. Trigona, B. Andò, S. Baglio, in 2019 IEEE International Symposium on Measurements & Networking (M &N) (IEEE, 2019), pp. 1–5

  20. B. Yaghootkar, S. Azimi, B. Bahreyni, IEEE Sens. J.17(13), 4005 (2017)

    Article  CAS  Google Scholar 

  21. Y. Wang, H. Ding, X. Le, W. Wang, J. Xie, Sens. Actuators A: Phys. 254, 126 (2017)

    Article  CAS  Google Scholar 

  22. J. Yang, M. Zhang, C. Si, G. Han, J. Ning, F. Yang, X. Wang, J. Microelectromech. Syst. 28(5), 776 (2019)

    Article  CAS  Google Scholar 

  23. M.h. Xu, H. Zhou, L.h. Zhu, J.n. Shen, Y.b. Zeng, Y.j. Feng, H. Guo, Microsyst. Technol. 25(12), 4465 (2019)

  24. A. Cowen, G. Hames, K. Glukh, B. Hardy, MEMSCAP Inc 1 (2014)

  25. P. Biswal, S.K. Kar, B. Mukherjee, J. Electronic Mater. 50(1), 375 (2021)

    Article  CAS  Google Scholar 

  26. Biswal, Priyabrata and Kar, Sougata Kumar and Mukherjee, Banibrata, in 2020 IEEE-HYDCON (IEEE, 2020), pp. 1–5

  27. O. Fedder, K. Clark, WIT Trans. Built Environ. 13 (1970)

  28. B. Hu, Y. Liu, B. Lin, G. Wu, W. Liu, C. Sun, IEEE Sens. J. 21(19), 21277 (2021)

    Article  CAS  Google Scholar 

  29. C. Saayujya, J.S.Q. Tan, Y. Yuan, Y.R. Wong, H. Du, in 2014 IEEE Ninth International Conference on Intelligent Sensors, Sensor Networks and Information Processing (ISSNIP) (IEEE, 2014), pp. 1–6

Download references

Acknowledgements

The authors would like to acknowledge Science and Engineering Research Board, DST, Govt. of India for funding support to this work. We also acknowledge IIT Kharagpur for finite-element analysis simulation facility.

Funding

This work is funded by Science and Engineering Research Board (SERB), DST, Govt. of India under the sanction number ECR/2017/000543 to Dr. Banibrata Mukherjee.

Author information

Authors and Affiliations

Authors

Contributions

All the authors contributed the idea, technical concept, methodology, and design of proposed sensor. Simulation and mathematical analysis were done by PB. The manuscript was reviewed by SKK and BM. All authors read and approved the manuscript.

Corresponding author

Correspondence to Priyabrata Biswal.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Consent to publication

All authors read and approved the manuscript. The authors give consent to publication.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Biswal, P., Kumar, M., Kar, S.K. et al. High-sensitivity and low-volume-based piezoelectric MEMS acceleration sensor using PiezoMUMPs. J Mater Sci: Mater Electron 34, 2162 (2023). https://doi.org/10.1007/s10854-023-11528-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-11528-x

Navigation