Skip to main content
Log in

Investigation of the effect of boron carbide addition on semiconductor zinc oxide nanoparticles on their structural, morphological, and dielectrical properties

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In the present study, pure zinc oxide (ZnO) and boron carbide (B4C) doped ZnO nanocomposite particles were fabricated by using the sol–gel method. The effect of B4C addition on ZnO nanoparticles on their structural, morphological, and dielectrical properties was investigated. The synthesized nanoparticles were characterized by using FE-SEM, XRD, EDX, and FT-IR analyses. The dielectrical behavior of nanoparticles was found by an impedance device. Pure ZnO and B4C-doped ZnO composite particles consist of nano-sized structures. In XRD analyses, no peaks belonging to secondary phases were detected and it was observed that pure and B4C-doped ZnO nanoparticles were successfully formed. It was determined that as the B4C doping increased, the intensities of the characteristic peaks of ZnO decreased, while the intensities of the characteristic peaks of B4C increased. ZnO are in an almost spherical-like form and are agglomerated. In the doped samples, ZnO nanoparticles are found locally agglomerated on the B4C nanoplates. It was observed that the B4C additive was effective on the dielectrical properties and improved the dielectrical properties. As the temperature increased, the AC and DC conductivities of all produced nanoparticles increased. Based on the results obtained in the study, it was thought that a competitor material to pure ZnO nanoparticles was synthesized in semiconductor devices and electronic devices and offers great potential for electronic device applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

Upon a reasonable request, the data that support this study’s findings are available from the corresponding author.

References

  1. T. Sahoo, M. Kim, J.H. Baek et al., MaRBu 46, 525 (2011)

    CAS  Google Scholar 

  2. M. Shkir, S. AlFaify, Sci. Rep. 7, 16091 (2017)

    Google Scholar 

  3. P.G. Jamkhande, N.W. Ghule, A.H. Bamer, M.G. Kalaskar, J. Drug Deliv. Sci. Technol. 53, 101174 (2019)

    CAS  Google Scholar 

  4. M. Parashar, V.K. Shukla, R. Singh, J. Mater. Sci.: Mater. Electron. 31, 3729 (2020)

    CAS  Google Scholar 

  5. Y. Azizian-Kalandaragh, Y. Badali, M.-A. Jamshidi-Ghozlu et al., Physica B 650, 414495 (2023)

    CAS  Google Scholar 

  6. Z.L. Wang, Mater. Today 7, 26 (2004)

    CAS  Google Scholar 

  7. G.L. Hornyak, J. Dutta, H.F. Tibbals, A. Rao, Introduction to Nanoscience (CRC Press, 2008)

    Google Scholar 

  8. Z. Fan, J.G. Lu, J. Nanosci. Nanotechnol. 5, 1561 (2005)

    CAS  Google Scholar 

  9. D. Sharma, S. Sharma, B.S. Kaith, J. Rajput, M. Kaur, ApSS 257, 9661 (2011)

    CAS  Google Scholar 

  10. A. Eftekhari, F. Molaei, H. Arami, Mater. Sci. Eng., A 437, 446 (2006)

    Google Scholar 

  11. K. Do Kim, D.W. Choi, Y.-H. Choa, H.T. Kim, Colloids Surf. Physicochem. Eng. Aspects 311, 170 (2007)

    Google Scholar 

  12. S. Cho, S.-H. Jung, K.-H. Lee, J. Phys. Chem. C 112, 12769 (2008)

    CAS  Google Scholar 

  13. H. Cheng, J. Cheng, Y. Zhang, Q.-M. Wang, JCrGr 299, 34 (2007)

    CAS  Google Scholar 

  14. M. Mansournia, S. Rafizadeh, S.M. Hosseinpour-Mashkani, M.H. Motaghedifard, Mater. Sci. Eng., C 65, 303 (2016)

    CAS  Google Scholar 

  15. A.S. Lanje, S.J. Sharma, R.S. Ningthoujam, J.-S. Ahn, R.B. Pode, Adv. Powder Technol. 24, 331 (2013)

    CAS  Google Scholar 

  16. W. Wang, Y. Xu, D. Zhang, X. Chen, MaRBu 36, 2155 (2001)

    CAS  Google Scholar 

  17. M. Mansournia, S. Rafizadeh, S.M. Hosseinpour-Mashkani, Ceram. Int. 42, 907 (2016)

    CAS  Google Scholar 

  18. M. Mansournia, S. Rafizadeh, S.M. Hosseinpour-Mashkani, J. Mater. Sci.: Mater. Electron. 26, 5839 (2015)

    CAS  Google Scholar 

  19. A. Ras, F. Auret, J. Nel, DRM 19, 1411 (2010)

    CAS  Google Scholar 

  20. S.C. Ozer, B. Buyuk, A.B. Tugrul et al., in: TMS 2016 145th Annual Meeting & Exhibition: Supplemental Proceedings (Springer, 2016)

  21. D. Reigada, R. Prioli, L. Jacobsohn, F. Freire Jr., DRM 9, 489 (2000)

    CAS  Google Scholar 

  22. V. Domnich, S. Reynaud, R.A. Haber, M. Chhowalla, J. Am. Ceram. Soc. 94, 3605 (2011)

    CAS  Google Scholar 

  23. S. Gao, X. Li, S. Wang, P. Xing, G. Yang, Ceram. Int. 45, 3101 (2019)

    CAS  Google Scholar 

  24. C. Summonte, M. Canino, M. Allegrezza et al., Mater. Sci. Eng., B 178, 551 (2013)

    CAS  Google Scholar 

  25. S. Sasaki, M. Takeda, K. Yokoyama et al., Sci. Technol. Adv. Mater. 6, 181 (2005)

    CAS  Google Scholar 

  26. T. Gurgenc, C.K. Macit, F. Biryan, E. Gurgenc, C. Ozel, S. Bellucci, Appl. Phys. A 129, 649 (2023)

    CAS  Google Scholar 

  27. K. Koran, F. Özen, F. Biryan, A.O. Görgülü, JMoSt 1105, 135 (2016)

    CAS  Google Scholar 

  28. F. Bezgin, N. Ayaz, K. Demirelli, J. Appl. Polym. Sci. 132 (2015)

  29. L.-Z. Chen, D.-D. Huang, J.-Z. Ge, F.-M. Wang, Inorg. Chim. Acta 406, 95 (2013)

    CAS  Google Scholar 

  30. W.-Q. Liao, Q.-Q. Zhou, Y. Zhang, L. Jin, Inorg. Chem. Commun. 33, 161 (2013)

    CAS  Google Scholar 

  31. K. Koran, F. Özen, F. Biryan, K. Demirelli, A.O. Görgülü, Inorg. Chim. Acta 450, 162 (2016)

    CAS  Google Scholar 

  32. S. Fratini, A. Morpurgo, S. Ciuchi, JPCS 69, 2195 (2008)

    CAS  Google Scholar 

  33. A.-M. Haughey, B. Guilhabert, A.L. Kanibolotsky et al., Sensors Actuators B: Chem. 185, 132 (2013)

    CAS  Google Scholar 

  34. Y. Tsai, F. Juang, T. Yang, M. Yokoyama, L. Ji, Y.-K. Su, JPCS 69, 764 (2008)

    CAS  Google Scholar 

  35. R. Bokolia, O. Thakur, V.K. Rai, S. Sharma, K. Sreenivas, Ceram. Int. 41, 6055 (2015)

    CAS  Google Scholar 

  36. F. Biryan, K. Demirelli, Adv. Polym. Tech. 37, 1994 (2018)

    CAS  Google Scholar 

  37. G. Torğut, F. Biryan, K. Demirelli, Bull. Mater. Sci. 42, 1 (2019)

    Google Scholar 

  38. R. Perveen, S. Shujaat, Z. Qureshi, S. Nawaz, M. Khan, M. Iqbal, J. Market. Res. 9, 7817 (2020)

    CAS  Google Scholar 

  39. T. Chitradevi, A. Jestin Lenus, N. Victor Jaya, Mater. Res. Express 7, 015011 (2020)

    CAS  Google Scholar 

  40. R. Peña-Garcia, Y. Guerra, R. Milani, D. Oliveira, A. Rodrigues, E. Padrón-Hernández, JMMM 498, 166085 (2020)

    Google Scholar 

  41. I. Ahmad, N. Jabeen, W. Ahmad, Fullernes, Nanotubes Carbon Nanostruct, 30, 727 (2022)

    CAS  Google Scholar 

  42. H.E. Swanson, Standard X-ray Diffraction Powder Patterns (US Department of Commerce, National Bureau of Standards, 1953)

    Google Scholar 

  43. D. Davtyan, R. Mnatsakanyan, L. Liu, S. Aydinyan, I. Hussainova, J. Market. Res. 8, 5823 (2019)

    CAS  Google Scholar 

  44. X. Li, S. Wang, D. Nie, K. Liu, S. Yan, P. Xing, DRM 97, 107458 (2019)

    CAS  Google Scholar 

  45. J. Shen, T. Li, W. Huang, Y. Long, N. Li, M. Ye, Electrochim. Acta 95, 155 (2013)

    CAS  Google Scholar 

  46. C.S. Reddy, G. Murali, A.S. Reddy, S. Park, I. In, JAllC 813, 152251 (2020)

    CAS  Google Scholar 

  47. X. Liu, J. Zang, S. Song, H. Gao, S. Zhou, Y. Wang, IJHE 48, 542 (2023)

    CAS  Google Scholar 

  48. W. Mai, Y. Zuo, X. Zhang et al., ChCom 55, 10241 (2019)

    CAS  Google Scholar 

  49. J. Hassan, M. Ikram, A. Ul-Hamid, M. Imran, M. Aqeel, S. Ali, Nanoscale Res. Lett. 15, 1 (2020)

    CAS  Google Scholar 

  50. Y.M. Lvov, P. Pattekari, X. Zhang, V. Torchilin, Langmuir 27, 1212 (2011)

    CAS  Google Scholar 

  51. S. Madivalappa, V.M. Jali, A. Jain, Macromolecular Symposia Wiley Online Library (2019)

  52. L. Whittig, W. Allardice, Methods of Soil Analysis: Part 1 Physical and Mineralogical Methods, vol. 5 (American Society of Agronomy, Madison, 1986), p.331

    Google Scholar 

  53. K. Mohanraj, D. Balasubramanian, J. Chandrasekaran, A.C. Bose, Mater. Sci. Semicond. Process. 79, 74 (2018)

    CAS  Google Scholar 

  54. V. Mote, Y. Purushotham, B. Dole, Mater. Des. 96, 99 (2016)

    CAS  Google Scholar 

  55. P. Singh, A. Kumar, A. Kaushal, D. Kaur, A. Pandey, R. Goyal, Bull. Mater. Sci. 31, 573 (2008)

    CAS  Google Scholar 

  56. C. Zegadi, K. Abdelkebir, D. Chaumont, M. Adnane, S. Hamzaoui, Adv. Mater. Phys. Chem. 2014 (2014).

  57. N.M. Azizah, S. Muhammady, M.A.K. Purbayanto et al., Progress Nat. Sci.: Mater. Int. 30, 28 (2020)

    CAS  Google Scholar 

  58. I. Jabbar, Y. Zaman, K. Althubeiti et al., RSC Adv. 12, 13456 (2022)

    CAS  Google Scholar 

  59. R. Amari, E. Benrezgua, B. Deghfel et al., OptMa 128, 112398 (2022)

    CAS  Google Scholar 

  60. A. Subki, M.H.B. Mamat, M. Musa et al., JALLC 926, 166728 (2022)

    CAS  Google Scholar 

  61. A. Ramos-Corona, R. Rangel, J. Lara-Romero, A. Ramos-Carrazco, Adv. Powder Technol. 33, 103829 (2022)

    CAS  Google Scholar 

  62. M. Ates, M. Yildirim, O. Kuzgun, H. Ozkan, JALLC 787, 851 (2019)

    CAS  Google Scholar 

  63. F. Hosseini, A. Kasaeian, F. Pourfayaz, M. Sheikhpour, D. Wen, Mater. Sci. Semicond. Process. 83, 175 (2018)

    CAS  Google Scholar 

  64. J.A. Mary, J.J. Vijaya, M. Bououdina, L.J. Kennedy, J. Daie, Y. Song, Physica B 456, 344 (2015)

    Google Scholar 

  65. S. Saleem, M.H. Jameel, N. Akhtar et al., Arab. J. Chem. 15, 103518 (2022)

    CAS  Google Scholar 

  66. M.M. Hassan, W. Khan, A. Azam, A. Naqvi, J. Ind. Eng. Chem. 21, 283 (2015)

    Google Scholar 

  67. S.A. Ansari, A. Nisar, B. Fatma, W. Khan, A. Naqvi, Mater. Sci. Eng. B 177, 428 (2012)

    CAS  Google Scholar 

  68. N. Kannadasan, N. Shanmugam, S. Cholan, K. Sathishkumar, G. Viruthagiri, R. Poonguzhali, Mater Charact 97, 37 (2014)

    CAS  Google Scholar 

  69. D. Raoufi, JLum 134, 213 (2013)

    CAS  Google Scholar 

  70. E.I. Naik, H.B. Naik, R. Viswanath, B. Kirthan, M. Prabhakara, Chem. Data Collect. 29, 100505 (2020)

    CAS  Google Scholar 

  71. S.A. Khorrami, H.R. Baharvandi, R. Lotfi, Orient. J. Chem. 32, 2243 (2016)

    CAS  Google Scholar 

  72. A. Alizadeh, E. Taheri-Nassaj, M. Hajizamani, J. Mater. Sci. Technol. 27, 1113 (2011)

    CAS  Google Scholar 

  73. K. Jayadevan, S.S. Kerkar, AIP. Conf. Proc. (AIP Publishing, 2019)

    Google Scholar 

  74. S. Karakaya, J. Mater. Sci.: Mater. Electron. 29, 4080 (2018)

    CAS  Google Scholar 

  75. A. Ismail, A. Menazea, H.A. Kabary, A. El-Sherbiny, A. Samy, JMoSt 1196, 332 (2019)

    CAS  Google Scholar 

  76. L. Wang, J. Luo, S. Shan et al., AnaCh 83, 8688 (2011)

    CAS  Google Scholar 

  77. I. Markova-Deneva, J. Univ. Chem. Technol. Metall. 45, 351 (2010)

    CAS  Google Scholar 

  78. F. Biryan, K. Demirelli, J. Appl. Polym. Sci. 133 (2016).

  79. F. Biryan, A.M. Abubakar, K. Demirelli, Thermochim. Acta 669, 66 (2018)

    CAS  Google Scholar 

  80. F. Biryan, K. Demirelli, JMoSt 1186, 187 (2019)

    CAS  Google Scholar 

  81. F.E. Al-Hazmi, JAllC 665, 119 (2016)

    CAS  Google Scholar 

  82. T. Gurgenc, JMoSt 1223, 128990 (2021)

    CAS  Google Scholar 

  83. N.S. Alghunaim, H.M. Alhusaiki-Alghamdi, Physica B 560, 185 (2019)

    CAS  Google Scholar 

  84. Q. Sun, Q. Zhang, N. Zhou, L. Zhang, Q. Hu, C. Ma, ApSS 565, 150524 (2021)

    CAS  Google Scholar 

  85. K.M. Batoo, R. Verma, A. Chauhan et al., JALLC 883, 160836 (2021)

    CAS  Google Scholar 

  86. V. Parthasaradi, M. Kavitha, A. Sridevi, J.J. Rubia, J. Mater. Sci.: Mater. Electron. 33, 25805 (2022)

    CAS  Google Scholar 

  87. J. Rivnay, S. Inal, B.A. Collins et al., Nat. Commun. 7, 11287 (2016)

    Google Scholar 

  88. S. Thakur, R. Rai, I. Bdikin, M.A. Valente, Mater. Res. 19, 1 (2016)

    CAS  Google Scholar 

  89. S. Mourad, J.E. Ghoul, K. Khirouni, J. Mater. Sci.: Mater. Electron. 31, 6372 (2020)

    CAS  Google Scholar 

  90. S. Ilican, Y. Caglar, M. Caglar, F. Yakuphanoglu, Physica E 35, 131 (2006)

    CAS  Google Scholar 

  91. V. Singh, A. Daryapurkar, S.S. Rajput, S. Mukherjee, A. Garg, R. Gupta, J. Am. Ceram. Soc. 100, 5226 (2017)

    CAS  Google Scholar 

  92. T. Dutta, P. Gupta, A. Gupta, J. Narayan, JAP. (2010). https://doi.org/10.1063/1.3499276

    Article  Google Scholar 

  93. H.M. Chenari, Mater. Today: Proc. 2, 3824 (2015)

    Google Scholar 

Download references

Acknowledgements

The nanoparticles produced in the study were applied to the Turkish Patent Institute with the title “Boron carbide reinforced zinc oxide nanocomposite material and its preparation method”.

Funding

No funding was received for this work.

Author information

Authors and Affiliations

Authors

Contributions

CKM synthesis of nanoparticles and structural and morphological examination of nanoparticles. EG in the interpretation of the structural and morphological analysis of nanoparticles. FB and FO on FT-IR and dielectric analysis of nanoparticles and their interpretation. TG and CO contributed to the control, design and interpretation of the analyses. The article has been read and approved by all authors in general terms.

Corresponding author

Correspondence to Cevher Kursat Macit.

Ethics declarations

Conflict of interest

The authors acknowledge that there are no conflicts of interest regarding this publication.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Macit, C.K., Gurgenc, E., Biryan, F. et al. Investigation of the effect of boron carbide addition on semiconductor zinc oxide nanoparticles on their structural, morphological, and dielectrical properties. J Mater Sci: Mater Electron 34, 2076 (2023). https://doi.org/10.1007/s10854-023-11522-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-11522-3

Navigation