Skip to main content
Log in

Tribocatalytic investigation of BaTiO3 for dye removal from water

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In the present work, we employed BaTiO3 powder as tribocatalyst for removing dye, a representative pollutant from the water via tribocatalysis process. In tribocatalysis experiments, it was demonstrated that BaTiO3 powder acting as a tribocatalyst, can effectively eliminates organic dyes due to the triboelectric effect occurring between glass and PTFE/Teflon interface. Additionally, the tribocatalytic performance of BaTiO3 powder was also investigated by varying the size and speed of the used PTFE. The maximum degradation for Methylene Blue (MB) and Rhodamine B (RB) dyes was ∼ 57 and ∼ 82% in 12 h, respectively. This work not only establishes an environmentally friendly method for the oxidative purification of organic contamination but also presents a hopeful approach which could be used in sustainable energy production and environmental remediation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The data that supports the findings of this study are available within the article.

References

  1. F.R. Fan, W. Tang, Z.L. Wang, Flexible nanogenerators for energy harvesting and self-powered electronics. Adv. Mater. 28(22), 4283–4305 (2016)

    Article  CAS  Google Scholar 

  2. F.-R. Fan, Z.-Q. Tian, Z.L. Wang, Flexible triboelectric generator. Nano Energy. 1(2), 328–334 (2012)

    Article  CAS  Google Scholar 

  3. Z.L. Wang, J. Song, Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science 312(5771), 242–246 (2006)

    Article  CAS  Google Scholar 

  4. S. Xu et al., A coupled photo-piezo-catalytic effect in a BST-PDMS porous foam for enhanced dye wastewater degradation. Nano Energy. 77, 105305 (2020)

    Article  CAS  Google Scholar 

  5. M. Sharma, R. Vaish, Vibration energy harvesting for degradation of dye and bacterial cells using cement-based Ba0. 85Ca0. 15Zr0. 1Ti0. 90O3 composites. Mater. Today Commun. 25, 101592 (2020)

    Article  CAS  Google Scholar 

  6. S. Lan, Y. Chen, L. Zeng, H. Ji, W. Liu, M. Zhu, Piezo-activation of peroxymonosulfate for benzothiazole removal in water. J. Hazard. Mater. 393, 122448 (2020)

    Article  CAS  Google Scholar 

  7. A. Zhang et al., Vibration catalysis of eco-friendly Na0. 5K0. 5NbO3-based piezoelectric: an efficient phase boundary catalyst. Appl. Catal. B Environ. 279, 119353 (2020)

    Article  CAS  Google Scholar 

  8. W. Feng et al., Piezopotential-driven simulated electrocatalytic nanosystem of ultrasmall MoC quantum dots encapsulated in ultrathin N-doped graphene vesicles for superhigh H2 production from pure water. Nano Energy 75, 104990 (2020)

    Article  CAS  Google Scholar 

  9. X. Xu et al., Harvesting vibration energy to piezo-catalytically generate hydrogen through Bi2WO6 layered-perovskite. Nano Energy. 78, 105351 (2020)

    Article  CAS  Google Scholar 

  10. L. Chen et al., Strong piezocatalysis in barium titanate/carbon hybrid nanocomposites for dye wastewater decomposition. J. Colloid Interface Sci. 586, 758–765 (2021)

    Article  CAS  Google Scholar 

  11. M. Sharma, G. Singh, R. Vaish, Dye degradation and bacterial disinfection using multicatalytic BaZr0. 02Ti0. 98O3 ceramics. J. Am. Ceram. Soc. 103(9), 4774–4784 (2020)

    Article  CAS  Google Scholar 

  12. E. Lin, Z. Kang, J. Wu, R. Huang, N. Qin, D. Bao, BaTiO3 nanocubes/cuboids with selectively deposited Ag nanoparticles: efficient piezocatalytic degradation and mechanism. Appl. Catal. B Environ. 285, 119823 (2021)

    Article  CAS  Google Scholar 

  13. D. Xia et al., Piezo-catalytic persulfate activation system for water advanced disinfection: process efficiency and inactivation mechanisms. Chem. Eng. J. 400, 125894 (2020)

    Article  CAS  Google Scholar 

  14. Y. Wang, J.M. Wu, Effect of controlled oxygen vacancy on H2-production through the piezocatalysis and piezophototronics of ferroelectric R3C ZnSnO3 nanowires. Adv. Funct. Mater. 30(5), 1907619 (2020)

    Article  CAS  Google Scholar 

  15. Y. Lin, S. Lai, J.M. Wu, Simultaneous piezoelectrocatalytic hydrogen-evolution and degradation of water pollutants by quartz microrods@ few‐layered MoS2 hierarchical heterostructures. Adv. Mater. 32(34), 2002875 (2020)

    Article  CAS  Google Scholar 

  16. S.-E. Zhu, F. Li, G.-W. Wang, Mechanochemistry of fullerenes and related materials. Chem. Soc. Rev. 42(18), 7535–7570 (2013)

    Article  CAS  Google Scholar 

  17. R. Zhang et al., The triboelectricity of the human body. Nano Energy. 86, 106041 (2021)

    Article  CAS  Google Scholar 

  18. Z.L. Wang, Triboelectric nanogenerators as new energy technology for self-powered systems and as active mechanical and chemical sensors. ACS Nano. 7(11), 9533–9557 (2013)

    Article  CAS  Google Scholar 

  19. D.K. Davies, Charge generation on dielectric surfaces. J. Phys. D Appl. Phys. 2(11), 1533 (1969)

    Article  Google Scholar 

  20. P.E. Shaw, “Experiments on tribo-electricity. I.—The tribo-electric series.” Proc. R. Soc. London. Ser. A, Contain. Pap. a Math. Phys. Character 94(656), 16–33 (1917)

    Google Scholar 

  21. T. Ohta, Mechano-catalytic water-splitting. Appl. Energy. 67, 1–2 (2000)

    Article  Google Scholar 

  22. T. Ohta, Efficiency of mechano-catalytic water-splitting system. Int. J. Hydrog. Energy 25(12), 1151–1156 (2000)

    Article  CAS  Google Scholar 

  23. P. Li et al., Strong tribocatalytic dye decomposition through utilizing triboelectric energy of barium strontium titanate nanoparticles. Nano Energy. 63, 103832 (2019)

    Article  CAS  Google Scholar 

  24. H. Lei et al., Tribo-catalytic degradation of organic pollutants through bismuth oxyiodate triboelectrically harvesting mechanical energy. Nano Energy. 78, 105290 (2020)

    Article  CAS  Google Scholar 

  25. C. Porwal et al., Piezocatalytic dye degradation using Bi2O3–ZnO–B2O3 glass-nanocomposites. J. Mater. Res. Technol. 21, 2028–2037 (2022)

    Article  CAS  Google Scholar 

  26. S. Verma, R. Vaish, Organic pollutants removal by quartz crystals. Int. J. Ceram. Eng. Sci. (2022). https://doi.org/10.1002/ces2.10161

    Article  Google Scholar 

  27. A. Gaur, V.S. Chauhan, R. Vaish, Porous BaTiO3 ceramic with enhanced piezocatalytic activity for water cleaning application. Surf. Interfaces 36, 102497 (2022)

    Article  Google Scholar 

  28. A. Gaur, M. Sharma, V.S. Chauhan, R. Vaish, “Solar/visible light photocatalytic dye degradation using BaTi1x–FexO3 ceramics,.” J. Am. Ceram. Soc (2022). https://doi.org/10.1111/jace.18514

    Article  Google Scholar 

  29. M. Rastogi, H.S. Kushwaha, R. Vaish, Highly efficient visible light mediated azo dye degradation through barium titanate decorated reduced graphene oxide sheets. Electron. Mater. Lett. 12(2), 281–289 (2016)

    Article  CAS  Google Scholar 

  30. A. Gajović, J.V. Pleština, K. Žagar, M. Plodinec, S. Šturm, M. Čeh, Temperature-dependent Raman spectroscopy of BaTiO3 nanorods synthesized by using a template‐assisted sol–gel procedure. J. Raman Spectrosc. 44(3), 412–420 (2013)

    Article  Google Scholar 

  31. C.H. Perry, D.B. Hall, Temperature dependence of the Raman spectrum of BaTiO3. Phys. Rev. Lett. 15(17), 700 (1965)

    Article  CAS  Google Scholar 

  32. U.D. Venkateswaran, V.M. Naik, R. Naik, High-pressure Raman studies of polycrystalline BaTiO3. Phys. Rev. B 58(21), 14256 (1998)

    Article  CAS  Google Scholar 

  33. Y. Shiratori, C. Pithan, J. Dornseiffer, R. Waser, “Raman scattering studies on nanocrystalline BaTiO3 Part I—isolated particles and aggregates.” J. Raman Spectrosc. An Int. J. Orig. Work all Asp. Raman Spectrosc. Incl. High. Order Process. also Brillouin Rayleigh Scatt., 38(10), 1288–1299 (2007)

    CAS  Google Scholar 

  34. A. Kumar, C. Schuerings, S. Kumar, A. Kumar, V. Krishnan, Perovskite-structured CaTiO3 coupled with g-C3N4 as a heterojunction photocatalyst for organic pollutant degradation. Beilstein J. Nanotechnol. 9(1), 671–685 (2018)

    Article  CAS  Google Scholar 

  35. M.A. Butler, D.S. Ginley, Prediction of flatband potentials at semiconductor-electrolyte interfaces from atomic electronegativities. J. Electrochem. Soc. 125(2), 228 (1978)

    Article  CAS  Google Scholar 

  36. S.A. Nasser, X-ray photoelectron spectroscopy study on the composition and structure of BaTiO3 thin films deposited on silicon. Appl. Surf. Sci. 157, 1–2 (2000)

    Article  Google Scholar 

  37. A. Gaur et al., Effect of Poling on Multicatalytic Performance of 0.5 ba (Zr0. 2Ti0. 8) O3-0.5 (Ba0. 7Sr0. 3) TiO3 ferroelectric ceramic for dye degradation. Mater. (Basel) 15(22), 8217 (2022)

    Article  CAS  Google Scholar 

  38. N. Gunasekaran, S. Rajadurai, J.J. Carberry, N. Bakshi, C.B. Alcock, Surface characterization and catalytic properties of La1–xAxMO3 perovskite type oxides. Part I. studies on La0. 95Ba0. 05MO3 (M = mn, Fe or Co) oxides. ” Solid State Ionics 73, 3–4 (1994)

    Google Scholar 

  39. K. Wei et al., Photocatalytic properties of a new Z-scheme system BaTiO 3/In 2 S 3 with a core–shell structure. RSC Adv. 9(20), 11377–11384 (2019)

    Article  CAS  Google Scholar 

  40. V. Craciun, R.K. Singh, Characteristics of the surface layer of barium strontium titanate thin films deposited by laser ablation. Appl. Phys. Lett. 76(14), 1932–1934 (2000)

    Article  CAS  Google Scholar 

  41. B.H. Devmunde, S.B. Somwanshi, P.B. Kharat, M.B. Solunke, “Rare earth ion (La3+) doped BaTiO3 perovskite nanoceramics for spintronic applications.” J. Phys. Conference Ser. 1644(1), 12055 (2020)

    Article  CAS  Google Scholar 

  42. X. Xiong, R. Tian, X. Lin, D. Chu, S. Li, “Formation and photocatalytic activity of BaTiO3 nanocubes via hydrothermal process.” J. Nanomater. (2015). https://doi.org/10.1155/2015/692182

    Article  Google Scholar 

  43. W.R. Harper, Contact and frictional electrification (Laplacian Press, Morgan Hill, 1998)

    Google Scholar 

  44. M.N. Horenstein, J.-S. Chang, A.J. Kelly, J.M. Crowley, Measurement of electrostatic fields, voltages, and charges (Marcel Dekker, New York, 1995)

    Google Scholar 

  45. C. Hu, H. Huang, F. Chen, Y. Zhang, H. Yu, T. Ma, Coupling piezocatalysis and photocatalysis in Bi4NbO8X (X = cl, br) polar single crystals. Adv. Funct. Mater. 30(7), 1908168 (2020)

    Article  CAS  Google Scholar 

  46. B. Baytekin, H.T. Baytekin, B.A. Grzybowski, What really drives chemical reactions on contact charged surfaces? J. Am. Chem. Soc. 134(17), 7223–7226 (2012)

    Article  CAS  Google Scholar 

  47. Q. Tang et al., Enhanced tribocatalytic degradation of dye pollutants through governing the charge accumulations on the surface of ferroelectric barium zirconium titanate particles. Nano Energy. 100, 107519 (2022)

    Article  CAS  Google Scholar 

  48. C. Sun et al., Tribocatalytic degradation of dyes by tungsten bronze ferroelectric ba2.5 Sr2.5 nb8 T2 O30 submicron particles. RSC Adv. 11(22), 13386–13395 (2021)

    Article  CAS  Google Scholar 

  49. B. Yang et al., Enhanced tribocatalytic degradation using piezoelectric CdS nanowires for efficient water remediation. J. Mater. Chem. C 8(42), 14845–14854 (2020)

    Article  CAS  Google Scholar 

  50. H. Lei, X. Cui, X. Jia, J. Qi, Z. Wang, W. Chen, Enhanced tribocatalytic degradation of Organic pollutants by ZnO nanoparticles of high crystallinity. Nanomaterials 13(1), 46 (2022)

    Article  CAS  Google Scholar 

  51. Y. Xu, R. Yin, Y. Zhang, B. Zhou, P. Sun, X. Dong, “Unveiling the mechanism of frictional catalysis in water by Bi12tio20: charge transfer and contaminant decomposition path,” Available SSRN 4154956

  52. C. Sun et al., Strong tribocatalytic dye degradation by tungsten bronze Ba4Nd2Fe2Nb8O30. Ceram. Int. 47(4), 5038–5043 (2021)

    Article  CAS  Google Scholar 

  53. M. Wu, H. Lei, J. Chen, X. Dong, Friction energy harvesting on bismuth tungstate catalyst for tribocatalytic degradation of organic pollutants. J. Colloid Interface Sci. 587, 883–890 (2021)

    Article  CAS  Google Scholar 

  54. A. Gaur, A.K. Moharana, C. Porwal, V.S. Chauhan, R. Vaish, Degradation of organic dyes by utilizing CaCu3Ti4O12 (CCTO) nanoparticles via tribocatalysis process. J. Ind. Eng. Chem. (2023). https://doi.org/10.1016/j.jiec.2023.08.048

    Article  Google Scholar 

  55. S. Acharya, S. Mansingh, K.M. Parida, The enhanced photocatalytic activity of gC 3 N 4-LaFeO 3 for the water reduction reaction through a mediator free Z-scheme mechanism. Inorg. Chem. Front. 4(6), 1022–1032 (2017)

    Article  CAS  Google Scholar 

  56. K.P. Singh, G. Singh, R. Vaish, Utilizing the localized surface piezoelectricity of centrosymmetric Sr1-xFexTiO3 (x ≤ 0.2) ceramics for piezocatalytic dye degradation. J. Eur. Ceram. Soc. 41(1), 326–334 (2021)

    Article  CAS  Google Scholar 

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

All authors read and approved the final manuscript. AG: Methodology, experimentation, and writing original draft; CP: assisted in performing experiments, writing first draft; VSC: supervision, validation, writing first Draft, RV: Supervision, contributed to design experiments and planning.

Corresponding authors

Correspondence to Vishal Singh Chauhan or Rahul Vaish.

Ethics declarations

Conflict of interest

The authors have no competing interests to declare that are relevant to this article.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 278.2 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gaur, A., Porwal, C., Chauhan, V.S. et al. Tribocatalytic investigation of BaTiO3 for dye removal from water. J Mater Sci: Mater Electron 34, 2154 (2023). https://doi.org/10.1007/s10854-023-11511-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-11511-6

Navigation