Skip to main content
Log in

Crystal growth, structural, hirshfeld surface analysis of Dl-2 aminobutanoate tartrate single crystal

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The Dl-2-Aminobutanoate tartrate (D2ABT) single crystal was grown by the slow evaporation solution method at room temperature. Powder X-ray diffraction was conducted to confirm the crystal structure of the grown crystal. FT-IR and FT-Raman studies were performed to identify functional groups within the crystal structure. The optical quality of the grown crystals was analysed by UV–Vis and NIR spectral analysis. The obtained result exhibits between the 410 and 1100 nm range, which is good optical transparency. The thermal behaviour of grown crystals has been studied using thermogravimetric and differential thermal analyses (TG-DTA). Hydrogen and carbon in the surrounding areas of the crystal were analysed using an FT NMR spectrum. A scanning electron microscope observed the surface morphology of a single crystal. Density functional theory has been used to investigate grown crystals’ Hirshfeld surface analysis properties. The outstanding physicochemical properties of grown single crystals (D2ABT) will be useful for optical and various biological applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

The data supporting this study’s findings are available on request from the corresponding author.  The authors declare that the data supporting the findings of this study are available within the paper.

References

  1. F. Stern, C.A. Beevers, Acta Crystallogr. 3, 341 (1950)

    Article  CAS  Google Scholar 

  2. Y. Y.Okaya, N.T. Stemple, M.I. Kay, Acta Crystallogr. 21, 237 (1966)

    Article  Google Scholar 

  3. D. Braga, A. Angeloni, E. Tagliavini, F. Grepioni, J. Chem. Soc. Dalton Trans. 12, 1961 (1998)

    Article  Google Scholar 

  4. E. Weber, N. Dorpinghaus, C. Wimmer, Z. Stein, H. Krupitsky, I. Goldberg, J. Org. Chem. 57, 6825 (1992)

    Article  CAS  Google Scholar 

  5. B. Gunes, H. Soylu, Acta Crystallogr. 51, 2346 (1995)

    Google Scholar 

  6. H. Soylu, Z. Kristallogr. 171, 255 (1985)

    CAS  Google Scholar 

  7. M. Akkurt, T. Hokelek, H. Soylu, Z. Kristallogr. 181, 161 (1987)

    Article  CAS  Google Scholar 

  8. V.S. Yadawa, V.M. Padmanabhan, Acta Crystallogr. B 29, 493 (1973)

    Article  Google Scholar 

  9. G.K. Ambady, G. Kartha, Acta Crystallogr. B 24, 1540 (1968)

    Article  CAS  Google Scholar 

  10. G.K. Ambady, Acta Crystallogr. B 24, 1548 (1968)

    Article  CAS  Google Scholar 

  11. B. U.Rychlewska, M. Warzajitis, J. Hoffmann, Rjchlewski, Molecules. 2, 106 (1997)

    Article  Google Scholar 

  12. J. Kivikoski, J. Vepsalainen, R. Suontamo, E. Pohjala, R. Laatikainen, Tetrahedron-Asymmetry 4, 709 (1993)

    Article  CAS  Google Scholar 

  13. T. Koristsanszky, D. Zobel, P. Luger, J. Phys. Chem. 104, 1549 (2000)

    Article  Google Scholar 

  14. M. Akkurt, I. Celik, S. Ozbey, E. Kendi, Z. Kristallogr. 215, 71 (2000)

    CAS  Google Scholar 

  15. A.N. Chekhlov, I.V. Martynov, Dokl. Akad. Nauk. 365, 492 (1999)

    CAS  Google Scholar 

  16. G. P.Starynowicz, Z. Meyer, Anorg, Allg. Chem. 626, 2441 (2000)

    Article  Google Scholar 

  17. U. Rychlewska, B. Warzajtis, Acta Crystallogr. B 56, 833 (2000)

    Article  Google Scholar 

  18. G.P. Srivastava, S. Mohan, Y.S. Jain, J. Raman Spectrosc. 13, 25 (1982)

    Article  CAS  Google Scholar 

  19. M. N.Kaneko, Takahashi, Spectrochim. Acta. 40 A, 33 (1984)

    Article  Google Scholar 

  20. B. Ranjith, P. Karunakaran, T. Srinivasan, C. Selavaraju, K. Gunasekaran, D. Velmuruagan, Crystal structure analysis of Schiff’s base derivatives. Int. J. Chem Tech Res. 6(5), 3091–3097 (2014)

    Google Scholar 

  21. P. Rajagopi, G. Sekar, G. Aruldhas, Proc. Indian Acad. Sci. Chem. Sci. 101, 243 (1989)

    Article  Google Scholar 

  22. H.L. Chen Zhan, Strauss, J. Chem. Phys. 108, 5522 (1998)

    Article  Google Scholar 

  23. P.L. Polavarapu, C.S. Ewig, T. Chandramouly, J. Am. Chem. Soc. 109, 7382 (1987)

    Article  CAS  Google Scholar 

  24. M. Koralewski, M. Szafranski, Ferroelectrics. 80, 917 (1988)

    Google Scholar 

  25. M. Koralewski, Feerroelectrics. 97, 233 (1989)

    Article  CAS  Google Scholar 

  26. M. Szafranski, Ferroelectrics. 129, 55 (1992)

    Article  CAS  Google Scholar 

  27. T. Tsukamoto, H. Futame, Phase Trans. 45, 59 (1993)

    Article  CAS  Google Scholar 

  28. M. Maeda, K. Honda, I. Suzuki, J. Phys. Soc. Jpn. 7, 2642 (1995)

    Article  Google Scholar 

  29. K. Deguchi, Y. Iwata, J. Phys. Soc. Jpn. 1, 135 (2000)

    Article  Google Scholar 

  30. B. Gerth, A. Sahling, G. pompe, E. Hegenbarth, B. Brezina,  Phys. Stat. Sol. A   57, K153 (1980)

    Article  CAS  Google Scholar 

  31. M.M. Abdelkader, Z.H. Eltanahy, M. Abutaleb, A. Abousehly, A. Elsharkawy, Philos. Mag. B 72, 91 (1995)

    Article  CAS  Google Scholar 

  32. K.E. Haller, Proceedings of the 10th International Conference on Raman Spectroscopy, Raman 86, University of Oregon,  Eugene, 11:17–18 1986

  33. I. Kanesaka, H. Kita, J. Raman Spectrosc. 23, 585 (1992)

    Article  CAS  Google Scholar 

  34. P. Kolandaivel, S. Selvasekarapandian, Cryst. Res. Tech. 28, 665 (1993)

    Article  CAS  Google Scholar 

  35. N. I.Kanesaka, N. Kita, J. Raman Spectrosc. 27, 811 (1996)

    Article  Google Scholar 

  36. S. Kamba, B. Brezina, J. Petzelt, G. Schaack, J. Phys. Condens. Matter 8, 8669 (1996)

    Article  CAS  Google Scholar 

  37. S. Kamba, G. Schaack, J. Petzelt, B. Brezina, J. Phys. Condens. Matter. 8, 4631 (1996)

    Article  CAS  Google Scholar 

  38. S. Kamba, G. Schaack, J. Petzelt, B. Brezina, Ferroelectrics 186, 181 (1996)

    Article  CAS  Google Scholar 

  39. S. Kamba, G. Schaack, J. Petzelt, Phys. Rev. B 51, 14998 (1995)

    Article  CAS  Google Scholar 

  40. H. Ratajczak, Proceeeding of the 3rd International Conference, “vibrational spectroscopy in materials science”, Krakow, Poland, 23–26 September 2000

  41. J.Fuller, Acta Crystallogr. C 51, 1680 (1995)

    Article  Google Scholar 

  42. T.N.G. Row, Coord. Chem. Rev. 183, 81 (1999)

    Article  CAS  Google Scholar 

  43. M. Oussaid, M. Kemiche, P. Becker, C. Carabatos- Nedelec, O. Watana be, Phys. Stat. Sol. B 196, 487 (1996)

    Article  CAS  Google Scholar 

  44. P. Dastidar, T.N.G. Row, B.R. Prasad, C.K. Subramanian, S. Bhattacharya, J. Chem. Soc. Perkin Trans. 2, 2419 (1993)

    Article  Google Scholar 

  45. N. Blagden, K.R. Seddon, Cryst. Eng. 2, 9 (1999)

    Article  CAS  Google Scholar 

  46. A. Padnan, C.C. Becerra, J.Phys. Condens. Matter  12, 2071 (2000)

    Article  Google Scholar 

  47. C.H. Gorbitz,  Acta Cryst. B 66, 253–259 (2010)

    Article  Google Scholar 

  48. E. Losev, E. Boldyreva, Acta Cryst. (2018). https://doi.org/10.1107/S2056989018016663

    Article  Google Scholar 

  49. M.A. Spackman, D. Jayatilaka, Cryst. Eng. Comm. 11, 19–32 (2009)

    Article  CAS  Google Scholar 

  50. Y.-H. Luo, G.-G. Wu, S.L. Mao, B.W. Sun, Inor. Chimica Acta 397, 1–9 (2013)

    Article  CAS  Google Scholar 

  51. R. Ilmi, S. Kansız, N. Dege, M.S. Khan, Synthesis, structure, Hirshfeld surface analysis and photophysical studies of red emitting europium acetylacetonate complex incorporating a phenanthroline derivative. J. Photochem. Photobiol. Chem. 377, 268–281 (2019)

    Article  CAS  Google Scholar 

  52. S. Kansız, A. Tolan, H. İçbudak, N. Dege, Synthesis, crystallographic structure, theoretical calculations, spectral and thermal properties of trans-diaquabis (trans-4-aminoantipyrine) cobalt (II) acesulfamate. J. Mol. Struct. 1190, 102–115 (2019)

    Article  Google Scholar 

  53. R. Balu, A. Panneerselvam, G. Devendrapandi, J.R. Rajabathar, H.A. Al-Lohedan, D.M. Al-Dhayan, Theoretical and experimental spectroscopic studies and analysis for wave function on N-phenylmorpholine-4-carboxamide benzene-1, 2-diamine with computational techniques. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 301(15), 122988 (2023)

    Article  CAS  Google Scholar 

  54. N. Backiyalakshmi, R. Manoranjitham, A. Panneerselvam, C. Usha, R. Shanthi, G. Devendrapandi, R. Balu, A combined theoretical and experimental study of the D-2-aminobutyric acid L-norvaline single crystal for efficient third-order nonlinear optical (NLO) applications. J. Mol. Struct. 1292(15), 136153 (2023)

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The authors (RJ DA and HA) extend their appreciation to the Deputyship for Research & Innovation, Ministry of Education in Saudi Arabia for funding this research (IFKSURC-1-0219).

Funding

The authors thank research grant number IFKSURC-1-0219.

Author information

Authors and Affiliations

Authors

Contributions

RB: Data curation, Formal analysis, Methodology, Writing—original draft, Supervision. GD: Conceptualization, Resources, Writing—original draft. MSD: Software, Formal analysis. JR: Data curation, Formal analysis, Software. HA-L: Data curation, Formal analysis, Methodology. DMA: Software, Formal analysis.

Corresponding authors

Correspondence to Ranjith Balu or Jothi Ramalingam Rajabathar.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Consent to participate

The authors agreed that they are participating in the research work.

Consent for publication

The authors agreed to publish this research paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Balu, R., Devendrapandi, G., Sumithra Devi, M. et al. Crystal growth, structural, hirshfeld surface analysis of Dl-2 aminobutanoate tartrate single crystal. J Mater Sci: Mater Electron 34, 2047 (2023). https://doi.org/10.1007/s10854-023-11495-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-11495-3

Navigation