Skip to main content
Log in

Crystal field modification via rare earth ions (Dy, Nd) incorporation on BiFeO3 fine nanoparticles

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Rare earth (Dy, Nd)-doped and co-doped multiferroic bismuth ferrites nanoparticles (NPs) with formulas Bi1 − xDyxFeO3 (x = 0, 0.02 and 0.04), Bi1−yNdyFeO3 (y = 0.02 and 0.04) and Bi1− x−yDyxNdyFeO3 (x = 0.02 and y = 0.02) were synthesized by a controlled hydrothermal process. X-ray diffraction (XRD) confirmed the presence of the typical rhombohedral distorted perovskite structure of BiFeO3 (BFO) for all synthesized nanopowders. Whereas a slight impurity phase started to appear in both 4% Dy- and 4% Nd-doped BFO samples. The crystallite sizes as determined by Scherrer equation were found to increase slightly with doping. In close agreement, images seen by TEM confirmed the size of nanoparticles. EDX analysis confirmed the presence of elements in such sample. Optical study revealed a clear crystal field and band structure modification. Direct optical bandgap determined through Tauc plot deduced from reflectance measurement showed a remarkable decrease in value. The real and imaginary parts of dielectric constant (ε’, ε”) show a maximum increase on co-doped BFO concomitant with remarkable increase in dielectric loss (tan δ) which indicates substantial enlarge in leakage current density. Further, the pure BFO shows a well-defined dielectric loss peak, which shifts toward higher frequency for doped NPs. Vacancies proliferation is one of the main sources of movable space charges in BFO and, through, for leakage current.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

Data are available from the authors upon reasonable request.

References

  1. M. Fiebig, Revival of the magnetoelectric effect. J. Phys. D 38(8), R123–R152 (2005). https://doi.org/10.1088/0022-3727/38/8/R01

    Article  CAS  Google Scholar 

  2. K.F. Wang, J.-M. Liu, Z.F. Ren, Multiferroicity: the coupling between magnetic and polarization orders. Adv. Phys. 58(4), 321–448 (2009). https://doi.org/10.1080/00018730902920554

    Article  CAS  Google Scholar 

  3. J.F. Scott, Multiferroic memories. Nature Mater. 6(4), 256–257 (2007). https://doi.org/10.1038/nmat1868

    Article  CAS  Google Scholar 

  4. W.B. Taazayet, I.M. Zouari, N. Hosni, B. Dkhil, N.T. Mliki, Facile synthesis of pure BiFeO3 and Bi2Fe4O9 nanostructures with enhanced photocatalytic activity. J. Mater. Sci. (2021). https://doi.org/10.1007/s10854-021-07459-0

    Article  Google Scholar 

  5. W. Ben Taazayet, I. Mallek Zouari, P. Gemeiner, B. Dkhil, N. Thabet Mliki, Effect of Zn Substitution on the Structural, Optical Properties and Photocatalytic Activity of BiFeO3 Nanopowders. Phys. Rapid Res. Ltrs 16(7), 2200081 (2022). https://doi.org/10.1002/pssr.202200081

    Article  CAS  Google Scholar 

  6. I. Grinberg et al., Perovskite oxides for visible-light-absorbing ferroelectric and photovoltaic materials. Nature 503(7477), 509–512 (2013). https://doi.org/10.1038/nature12622

    Article  CAS  Google Scholar 

  7. V.A. Khomchenko, D.V. Karpinsky, J.A. Paixão, Magnetostructural correlations in BiFeO3 -based multiferroics. J. Mater. Chem. C 5(14), 3623–3629 (2017). https://doi.org/10.1039/C7TC00833C

    Article  CAS  Google Scholar 

  8. V. Koval, I. Skorvanek, M. Reece, L. Mitoseriu, H. Yan, Effect of dysprosium substitution on crystal structure and physical properties of multiferroic BiFeO3 ceramics. J. Eur. Ceram. Soc. 34(3), 641–651 (2014). https://doi.org/10.1016/j.jeurceramsoc.2013.10.002

    Article  CAS  Google Scholar 

  9. J. Bielecki et al., Structural and magnetic properties of isovalently substituted multiferroic BiFeO3: insights from Raman spectroscopy. Phys. Rev. B 86, 184422 (2012). https://doi.org/10.1103/PhysRevB.86.184422

    Article  CAS  Google Scholar 

  10. D.P. Dutta, B.P. Mandal, R. Naik, G. Lawes, A.K. Tyagi, Magnetic, ferroelectric, and magnetocapacitive properties of sonochemically synthesized Sc-Doped BiFeO3 nanoparticles. J. Phys. Chem. C 117(5), 2382–2389 (2013). https://doi.org/10.1021/jp310710p

    Article  CAS  Google Scholar 

  11. A.A. Belik et al., Structure and magnetic properties of BiFe0.75 Mn0.25 O3 perovskite prepared at ambient and high pressure. Chem. Mater. 23(20), 4505–4514 (2011). https://doi.org/10.1021/cm201774y

    Article  CAS  Google Scholar 

  12. A. Ianculescu, F.P. Gheorghiu, P. Postolache, O. Oprea, L. Mitoseriu, The role of doping on the structural and functional properties of BiFe1−xMnxO3 magnetoelectric ceramics. J. Alloys Compd. 504(2), 420–426 (2010). https://doi.org/10.1016/j.jallcom.2010.05.135

    Article  CAS  Google Scholar 

  13. X.S. Xu et al., Tunable band gap in Bi(Fe1 – xMnx)O3 films. Appl. Phys. Lett. 96, 192901 (2010). https://doi.org/10.1063/1.3427499

    Article  CAS  Google Scholar 

  14. A.Z. Simões, L.S. Cavalcante, C.S. Riccardi, J.A. Varela, E. Longo, Improvement of fatigue resistance on La modified BiFeO3 thin films. Curr. Appl. Phys. 9(2), 520–523 (2009). https://doi.org/10.1016/j.cap.2008.05.001

    Article  Google Scholar 

  15. Y. Du, Z.X. Cheng, M. Shahbazi, E.W. Collings, S.X. Dou, X.L. Wang, Enhancement of ferromagnetic and dielectric properties in lanthanum doped BiFeO3 by hydrothermal synthesis. J. Alloys Compd. 490(1–2), 637–341 (2010). https://doi.org/10.1016/j.jallcom.2009.10.124

    Article  CAS  Google Scholar 

  16. J. Walker et al., Temperature dependent piezoelectric response and strain–electric-field hysteresis of rare-earth modified bismuth ferrite ceramics. J. Mater. Chem. C 4(33), 7859–7868 (2016). https://doi.org/10.1039/C6TC02000C

    Article  CAS  Google Scholar 

  17. F. Zhang, X. Zeng, D. Bi, K. Guo, Y. Yao, S. Lu, Dielectric, Ferroelectric, and Magnetic Properties of Sm-Doped BiFeO3 Ceramics Prepared by a Modified Solid-State-Reaction Method. Materials 11(11), 2208 (2018). https://doi.org/10.3390/ma11112208

    Article  CAS  Google Scholar 

  18. S.W. Hyun, K.R. Choi, C.S. Kim, The Magnetic Properties for Europium-Doped BiFeO3. J. Supercond Nov Magn. 24, 1–2 (2011). https://doi.org/10.1007/s10948-010-0959-6

    Article  CAS  Google Scholar 

  19. C.M. Raghavan, D. Do, J.W. Kim, W.-J. Kim, S.S. Kim, Effects of Transition Metal Ion Doping on Structure and Electrical Properties of Bi0.9Eu0.1FeO3 Thin Films. J. Am. Ceram. Soc. 95(6), 1933–1938 (2012). https://doi.org/10.1111/j.1551-2916.2012.05081.x

    Article  CAS  Google Scholar 

  20. S. Pattanayak, B.N. Parida, P.R. Das, R.N.P. Choudhary, Impedance spectroscopy of Gd-doped BiFeO3 multiferroics. Appl. Phys. A 112(2), 387–395 (2013). https://doi.org/10.1007/s00339-012-7412-6

    Article  CAS  Google Scholar 

  21. G.S. Lotey, N.K. Verma, Structural, magnetic, and electrical properties of Gd-doped BiFeO3 nanoparticles with reduced particle size. J. Nanopart. Res. 14(3), 742 (2012). https://doi.org/10.1007/s11051-012-0742-7

    Article  CAS  Google Scholar 

  22. P. Uniyal, K.L. Yadav, Observation of the room temperature magnetoelectric effect in Dy doped BiFeO 3. J. Phys. : Condens. Matter 21(1), 012205 (2009). https://doi.org/10.1088/0953-8984/21/1/012205

    Article  CAS  Google Scholar 

  23. S.S. Chowdhury et al., Dy doped BiFeO 3: A bulk ceramic with improved multiferroic properties compared to nano counterparts. Ceram. Int. 43(12), 9191–9199 (2017). https://doi.org/10.1016/j.ceramint.2017.04.072

    Article  CAS  Google Scholar 

  24. A. Gautam, K. Singh, K. Sen, R.K. Kotnala, M. Singh, Crystal structure and magnetic property of Nd doped BiFeO3 nanocrytallites. Mater. Lett. 65(4), 591–594 (2011). https://doi.org/10.1016/j.matlet.2010.11.002

    Article  CAS  Google Scholar 

  25. C. Meng, T. Guoqiang, X. Xu, X. Ao, R. Huijun, Preparation of Nd-doped BiFeO3 films and their electrical properties. Phys. B: Condens. Matter 407, 3360–3363 (2012). https://doi.org/10.1016/j.physb.2012.04.038

    Article  CAS  Google Scholar 

  26. R. Guo, L. Fang, W. Dong, F. Zheng, M. Shen, Enhanced Photocatalytic Activity and Ferromagnetism in Gd Doped BiFeO 3$ Nanoparticles. J. Phy. Chem. C 114(49), 21390–21396 (2010). https://doi.org/10.1021/jp104660a

    Article  CAS  Google Scholar 

  27. A. Mukherjee, S. Basu, P.K. Manna, S.M. Yusuf, M. Pal, Enhancement of multiferroic properties of nanocrystalline BiFeO3 powder by Gd-doping. J. Alloys Compd. 598, 142–150 (2014). https://doi.org/10.1016/j.jallcom.2014.01.245

    Article  CAS  Google Scholar 

  28. S. Irfan, Y. Shen, S. Rizwan, H.-C. Wang, S.B. Khan, C.-W. Nan, Band-Gap Engineering and Enhanced Photocatalytic Activity of Sm and Mn Doped BiFeO 3$ Nanoparticles. J. Am. Ceram. Soc. 100(1), 31–40 (2017). https://doi.org/10.1111/jace.14487

    Article  CAS  Google Scholar 

  29. P. Scherrer, Bestimmung der Größe und der inneren Struktur von Kolloidteilchen mittels Röntgenstrahlen. Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse 1918, 98–100 (1918)

    Google Scholar 

  30. J.I. Langford, A.J.C. Wilson, Scherrer after sixty years: A survey and some new results in the determination of crystallite size. J. Appl. Crystallogr. 11(2), 102–113 (1978). https://doi.org/10.1107/S0021889878012844

    Article  CAS  Google Scholar 

  31. V. Uvarov, I. Popov, Metrological characterization of X-ray diffraction methods at different acquisition geometries for determination of crystallite size in nano-scale materials. Mater. Charact. 85, 111–123 (2013). https://doi.org/10.1016/j.matchar.2013.09.002

    Article  CAS  Google Scholar 

  32. B. Ramachandran, A. Dixit, R. Naik, G. Lawes, M.S.R. Rao, Charge transfer and electronic transitions in polycrystalline BiFeO 3. Phys. Rev. B 82(1), 012102 (2010). https://doi.org/10.1103/PhysRevB.82.012102

    Article  CAS  Google Scholar 

  33. M.O. Ramirez et al., Magnon sidebands and spin-charge coupling in bismuth ferrite probed by nonlinear optical spectroscopy. Phys. Rev. B 79, 224106 (2009). https://doi.org/10.1103/PhysRevB.79.224106

    Article  CAS  Google Scholar 

  34. P. Chen et al., Optical properties of quasi-tetragonal BiFeO3 thin films. Appl. Phys. Lett. 96(13), 131907 (2010). https://doi.org/10.1063/1.3364133

    Article  CAS  Google Scholar 

  35. M.A. Boston, in Amorphous and liquid semiconductors. ed. by J. Tauc (Springer, New York, 1974). https://doi.org/10.1007/978-1-4615-8705-7

    Chapter  Google Scholar 

  36. X. Chen, S. Shen, L. Guo, S.S. Mao, Semiconductor-based Photocatalytic Hydrogen Generation. Chem. Rev. 110(11), 6503–6570 (2010). https://doi.org/10.1021/cr1001645

    Article  CAS  Google Scholar 

  37. T.D. Rao, T. Karthik, S. Asthana, Investigation of structural, magnetic and optical properties of rare earth substituted bismuth ferrite. J. Rare Earths 31(4), 370–375 (2013). https://doi.org/10.1016/S1002-0721(12)60288-9

    Article  CAS  Google Scholar 

  38. Y. Zhu et al., Effect of Eu, Mn co-doping on structural, optical and magnetic properties of BiFeO3 nanoparticles. Mater. Sci. Semiconduct. Process. 57, 178–184 (2017). https://doi.org/10.1016/j.mssp.2016.10.023

    Article  CAS  Google Scholar 

  39. P. Reddy Vanga, R.V. Mangalaraja, M. Ashok, Structural, magnetic and photocatalytic properties of La and alkaline co-doped BiFeO3 nanoparticles. Mater. Sci. Semicond. Process. 40, 796–802 (2015). https://doi.org/10.1016/j.mssp.2015.07.078

    Article  CAS  Google Scholar 

  40. A. Kumar, P. Sharma, W. Yang, J. Shen, D. Varshney, Q. Li, Effect of La and Ni substitution on structure, dielectric and ferroelectric properties of BiFeO 3 ceramics. Ceram. Int. 42(13), 14805–14812 (2016). https://doi.org/10.1016/j.ceramint.2016.06.113

    Article  CAS  Google Scholar 

  41. P. Lunkenheimer, V. Bobnar, A.V. Pronin, A.I. Ritus, A.A. Volkov, A. Loidl, Origin of apparent colossal dielectric constants. Phys. Rev. B 66(5), 052105 (2002). https://doi.org/10.1103/PhysRevB.66.052105

    Article  CAS  Google Scholar 

  42. K.W. Wagner, Zur theorie der unvollkommenen dielektrika. Ann. Phys. 345(5), 817–855 (1913). https://doi.org/10.1002/andp.19133450502

    Article  Google Scholar 

  43. F. Gheorghiu, M. Calugaru, A. Ianculescu, V. Musteata, L. Mitoseriu, Preparation and functional characterization of BiFeO3 ceramics: a comparative study of the dielectric properties. Solid State Sci. 23, 79–87 (2013). https://doi.org/10.1016/j.solidstatesciences.2013.06.010

    Article  CAS  Google Scholar 

  44. A. Saxena, P. Sharma, A. Saxena, V. Verma, R.S. Saxena, Effect of La doping on dielectric properties of BiFe0.95Mn0.05O3 multiferroics. Ceram. Int. 40(9), 15065–15072 (2014). https://doi.org/10.1016/j.ceramint.2014.06.114

    Article  CAS  Google Scholar 

  45. Z.X. Cheng, X.L. Wang, S.X. Dou, H. Kimura, K. Ozawa, Enhancement of ferroelectricity and ferromagnetism in rare earth element doped BiFeO3. J. Appl. Phys. 104(11), 116109 (2008). https://doi.org/10.1063/1.3035915

    Article  CAS  Google Scholar 

  46. G.D. Hu, S.H. Fan, C.H. Yang, W.B. Wu, Low leakage current and enhanced ferroelectric properties of Ti and Zn codoped BiFeO3 thin film. Appl. Phys. Lett. 92(19), 192905 (2008). https://doi.org/10.1063/1.2918130

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors want to thank Loic Patout for TEM observations at CP2M and IM2NP (France), Brahim Dkhil for XRD and Reflectance measurements at SPMS CentraleSupélec of Université Paris-Saclay (France).

Funding

This research was supported by the « Ministère de l’Enseignement et la Recherche Scientifique », Laboratoire LR99ES17, « PRF2019-D4P2 », « Tunisio-Marrocain 20/R&D23 », and « PHC Utique 21G1408 » projects.

Author information

Authors and Affiliations

Authors

Contributions

WB: Investigation, Data curation and Writing-Original draft preparation. IM: discussion the results of the manuscript. NT: discussion, validation, and supervision.

Corresponding author

Correspondence to Wael Ben Taazayet.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Research involving human and animal rights

The present study did not involve any human or animal tissue testing, and the engineering aspects of the experiments were all in accordance with ethical requirements.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ben Taazayet, W., Mallek Zouari, I. & Thabet Mliki, N. Crystal field modification via rare earth ions (Dy, Nd) incorporation on BiFeO3 fine nanoparticles. J Mater Sci: Mater Electron 34, 2110 (2023). https://doi.org/10.1007/s10854-023-11487-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-11487-3

Navigation