Skip to main content
Log in

Spin-phonon coupling and giant dielectric constant in Bi0.5La0.5Fe0.4Al0.1Mn0.5O3

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In the present article, we report the magnetic, dielectric, and structural properties of the perovskite Bi0.5La0.5Fe0.4Al0.1Mn0.5O3. The structural analysis shows that this system crystallizes in a disordered orthorhombic phase with the space group Pnma. We found two consecutive magnetic transitions at 42 K and 147 K which have been suggested to be associated with the spin-glass and long-range ordering transitions, respectively. Further, temperature-dependent Raman spectra shows that this system has a spin-phonon coupling. Moreover, the dielectric measurement suggests that this system has a large dielectric constant at ambient temperature. Additionally, the dielectric spectrum suggests an unusual frequency-dependent step-like trend and the presence of weak relaxor ferroelectricity in the system. Thus, the presence of such multiple interesting characteristics suggests that Bi0.5La0.5Fe0.4Al0.1Mn0.5O3 can be used as spintronic devices and high dielectric applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The data supporting this study’s findings are available within the article.

References

  1. A. Kumar, S.D. Kaushik, V. Siruguri, D. Pandey, Evidence for two spin-glass transitions with magnetoelastic and magnetoelectric couplings in the multiferroic (Bi1−xBax)(Fe1−xTix)O3 system. Phys. Rev. B (2018). https://doi.org/10.1103/PhysRevB.97.104402

    Article  Google Scholar 

  2. M.K. Singh, W. Prellier, M.P. Singh, R.S. Katiyar, J.F. Scott, Spin-glass transition in single-crystal BiFeO3. Phys. Rev. B 77, 144403 (2008). https://doi.org/10.1103/PhysRevB.77.144403

    Article  CAS  Google Scholar 

  3. W.-M. Zhu, H.-Y. Guo, Z.-G. Ye, Structural and magnetic characterization of multiferroic (BiFeO3)1–x(PbTiO3)x solid solutions. Phys. Rev. B 78, 014401 (2008). https://doi.org/10.1103/PhysRevB.78.014401

    Article  CAS  Google Scholar 

  4. S. Chillal, M. Thede, F.J. Litterst, S.N. Gvasaliya, T.A. Shaplygina, S.G. Lushnikov, A. Zheludev, Microscopic coexistence of antiferromagnetic and spin-glass states. Phys. Rev. B 87, 220403 (2013). https://doi.org/10.1103/PhysRevB.87.220403

    Article  CAS  Google Scholar 

  5. S.E. Musavi Ghahfarokhi, M.R. Larki, I. Kazeminezhad, The effect of Mn doped on the structural, magnetic, dielectric and optical properties of bismuth ferrite (BiFe1-xMnxO3) nanoparticles. Vacuum 173, 109143 (2020). https://doi.org/10.1016/j.vacuum.2019.109143

    Article  CAS  Google Scholar 

  6. G. Catalan, Magnetocapacitance without magnetoelectric coupling. Appl. Phys. Lett. 88, 102902 (2006). https://doi.org/10.1063/1.2177543

    Article  CAS  Google Scholar 

  7. S. Kumari, K. Anand, M. Alam, L. Ghosh, S. Ghosh, P. Gupta, R. Singh, A.K. Jain, S.M. Yusuf, A.K. Ghosh, A. Mohan, S. Chatterjee, Spontaneous exchange bias and large dielectric constant in Bi0.8Tb0.2Fe0.8Mn0.2O3 multiferroic. J. Appl. Phys. 132, 183909 (2022). https://doi.org/10.1063/5.0106110

    Article  CAS  Google Scholar 

  8. S. Dong, Y. Yao, Y. Hou, Y. Liu, Y. Tang, X. Li, Dynamic properties of spin cluster glass and the exchange bias effect in BiFeO3 nanocrystals. Nanotechnology 22, 385701 (2011). https://doi.org/10.1088/0957-4484/22/38/385701

    Article  CAS  Google Scholar 

  9. S.M. Yakout, Spintronics: future technology for new data storage and communication devices. J. Supercond. Nov. Magn.Supercond. Nov. Magn. 33, 2557–2580 (2020). https://doi.org/10.1007/s10948-020-05545-8

    Article  CAS  Google Scholar 

  10. M. De, S.P. Patel, H.S. Tewari, Strain induced structural phase transition in NaNbO3 doped BiFeO3. J. Mater. Sci. Mater. Electron. 28, 6928–6935 (2017). https://doi.org/10.1007/s10854-017-6393-9

    Article  CAS  Google Scholar 

  11. S.K. Abdel-Aal, A.S. Abdel-Rahman, Graphene influence on the structure, magnetic, and optical properties of rare-earth perovskite. J. Nanopart. Res.Nanopart. Res. (2020). https://doi.org/10.1007/s11051-020-05001-7

    Article  Google Scholar 

  12. S.K. Abdel-Aal, M.F. Kandeel, A.F. El-Sherif, A.S. Abdel-Rahman, Synthesis, characterization, and optical properties of new organic-inorganic hybrid perovskites [(NH3)2(CH2)3]CuCl4 and [(NH3)2(CH2)4]CuCl2Br2. Phys. Status Solid A (2021). https://doi.org/10.1002/pssa.202100036

    Article  Google Scholar 

  13. S.K. Abdel-Aal, A.I. Beskrovnyi, A.M. Ionov, R.N. Mozhchil, A.S. Abdel-Rahman, Structure investigation by neutron diffraction and X-ray diffraction of graphene nanocomposite CuO–rGO prepared by low-cost method. Phys. Status Solid A. (2021). https://doi.org/10.1002/pssa.202100138

    Article  Google Scholar 

  14. A. Sabry, A. Rahman, A.S. Abdel-Rahman, An approach to the micro-strain distribution inside nanoparticle structure, (2023). https://doi.org/10.21203/rs.3.rs-2281463/v2.

  15. R. Katoch, C.D. Sekhar, V. Adyam, J.F. Scott, R. Gupta, A. Garg, Spin phonon interactions and magnetodielectric effects in multiferroic BiFeO3–PbTiO3. J. Phys. Condens. MatterCondens. Matter. 28, 075901 (2016). https://doi.org/10.1088/0953-8984/28/7/075901

    Article  CAS  Google Scholar 

  16. A. Sarkar, A.K. Singh, D. Sarkar, G.G. Khan, K. Mandal, Three-dimensional nanoarchitecture of BiFeO3 anchored TiO2 nanotube arrays for electrochemical energy storage and solar energy conversion. ACS Sustain Chem Eng. 3, 2254–2263 (2015). https://doi.org/10.1021/acssuschemeng.5b00519

    Article  CAS  Google Scholar 

  17. Y. Li, M. Cao, D. Wang, J. Yuan, High-efficiency and dynamic stable electromagnetic wave attenuation for La doped bismuth ferrite at elevated temperature and gigahertz frequency. RSC Adv. 5, 77184–77191 (2015). https://doi.org/10.1039/C5RA15458H

    Article  CAS  Google Scholar 

  18. R. Tholkappiyan, K. Vishista, Combustion synthesis of Mg-Er ferrite nanoparticles: cation distribution and structural, optical, and magnetic properties. Mater. Sci. Semicond. Process.Semicond. Process. 40, 631–642 (2015). https://doi.org/10.1016/j.mssp.2015.06.076

    Article  CAS  Google Scholar 

  19. K. Anand, A. Pal, A.G. Joshi, P. Pal, R. Singh, P.T.-W. Yen, S.M. Huang, M. Alam, S. Kumari, V. Sathe, S. Chakravarty, A. Mohan, S. Chatterjee, Giant exchange bias in antiferromagnetic Pr2CoFe0.5Mn0.5O6: a structural and magnetic properties study. J. Phys. D Appl. Phys. 55, 365004 (2022). https://doi.org/10.1088/1361-6463/ac79da

    Article  Google Scholar 

  20. M. Alam, L. Ghosh, S. Majumder, P. Singh, S.V. Kumar, S. Dixit, D. Kumar, K. Anand, S. Kumari, A.K. Ghosh, R.J. Choudhary, S. Chatterjee, Multifunctional behaviour in B-site disordered double perovskite EuPrCoMnO6. J. Phys. D Appl. Phys. 55, 255003 (2022). https://doi.org/10.1088/1361-6463/ac5fd4

    Article  Google Scholar 

  21. M. Umar, N. Mahmood, S.U. Awan, S. Fatima, A. Mahmood, S. Rizwan, Rationally designed La and Se co-doped bismuth ferrites with controlled bandgap for visible light photocatalysis. RSC Adv. 9, 17148–17156 (2019). https://doi.org/10.1039/C9RĂ4F

    Article  CAS  Google Scholar 

  22. R. Kumar, P. Yanda, A. Sundaresan, Cluster-glass behavior in the two-dimensional triangular lattice Ising-spin compound Li2Mn3O7. Phys. Rev. B 103, 214427 (2021). https://doi.org/10.1103/PhysRevB.103.214427

    Article  CAS  Google Scholar 

  23. K. Binder, A.P. Young, Spin glasses: experimental facts, theoretical concepts, and open questions. Rev. Mod. Phys. 58, 801–976 (1986). https://doi.org/10.1103/RevModPhys.58.801

    Article  CAS  Google Scholar 

  24. K. Anand, M. Alam, A. Pal, P. Singh, S. Kumari, A.G. Joshi, A. Das, A. Mohan, S. Chatterjee, Existence of Griffiths phase and unusual spin dynamics in double perovskite Tb2CoMnO6. J. Magn. Magn. Mater.Magn. Magn. Mater. 528, 168–169 (2021). https://doi.org/10.1016/j.jmmm.2020.167697

    Article  CAS  Google Scholar 

  25. M. Alam, P. Singh, K. Anand, A. Pal, S. Ghosh, A.K. Ghosh, R.K. Singh, A.G. Joshi, S. Chatterjee, Extraordinary magnetic properties of double perovskite Eu2CoMnO6 wide band gap semiconductor. J. Phys. Condens. MatterCondens. Matter. 32, 365802 (2020). https://doi.org/10.1088/1361-648X/ab8ecc

    Article  CAS  Google Scholar 

  26. P. Bag, P.R. Baral, R. Nath, Cluster spin-glass behavior and memory effect in Cr0.5Fe0.5Ga. Phys. Rev. B 98, 144436 (2018). https://doi.org/10.1103/PhysRevB.98.144436

    Article  CAS  Google Scholar 

  27. K. Anand, A. Pal, A.G. Joshi, P. Pal, R. Singh, P.T.-W. Yen, S.M. Huang, M. Alam, S. Kumari, V. Sathe, S. Chakravarty, A. Mohan, S. Chatterjee, Giant exchange bias in antiferromagnetic Pr2 CoFe0.5 Mn05 O6: a structural and magnetic properties study. J. Phys. D Appl. Phys. 55, 365004 (2022). https://doi.org/10.1088/1361-6463/ac79da

    Article  Google Scholar 

  28. K. Anand, A. Pal, M. Alam, S. Dan, S. Kumar, S. Ghosh, S. Kumari, A. Das, M. Sawada, A. Mohan, V.G. Sathe, Emergence of metamagnetic transition, re-entrant cluster glass and spin phonon coupling in Tb2CoMnO6. J. Phys. Condens. MatterCondens. Matter. 33, 275802 (2021). https://doi.org/10.1088/1361-648X/abfe94

    Article  CAS  Google Scholar 

  29. A. Kumar, S.D. Kaushik, V. Siruguri, D. Pandey, Evidence for two spin-glass transitions with magnetoelastic and magnetoelectric couplings in the multiferroic (B i1–x Bax)(Fe1–x T IX) O3 system. Phys. Rev. B (2018). https://doi.org/10.1103/PhysRevB.97.104402

    Article  Google Scholar 

  30. G.R. Haripriya, H.S. Nair, R. Pradheesh, S. Rayaprol, V. Siruguri, D. Singh, R. Venkatesh, V. Ganesan, K. Sethupathi, V. Sankaranarayanan, Spin reorientation and disordered rare earth magnetism in Ho2FeCoO6. J. Phys. Condens. MatterCondens. Matter 29, 475804 (2017). https://doi.org/10.1088/1361-648X/aa919e

    Article  CAS  Google Scholar 

  31. P. Lunkenheimer, V. Bobnar, A.V. Pronin, A.I. Ritus, A.A. Volkov, A. Loidl, Origin of apparent colossal dielectric constants. Phys. Rev. B 66, 052105 (2002). https://doi.org/10.1103/PhysRevB.66.052105

    Article  CAS  Google Scholar 

  32. R. Singh, P.K. Gupta, S. Kumar, A.G. Joshi, A.K. Ghosh, S. Patil, S. Chatterjee, Enhancement in electrical and magnetic properties with Ti-doping inBi0.5La0.5Fe0.5Mn0.5O3. J. Appl. Phys.Appl Phys. 121, 154101 (2017). https://doi.org/10.1063/1.4981876

    Article  CAS  Google Scholar 

  33. D.N. Dubey, G. Singh, S. Tripathi, Relaxor ferroelectricity driven by ‘A’ and ‘B’ site off-centered displacements in cubic phase with Pm 3 m space group. J. Phys. D Appl. Phys. 54, 365304 (2021). https://doi.org/10.1088/1361-6463/ac0bda

    Article  CAS  Google Scholar 

  34. M. Alam, A. Pal, K. Anand, S. Ghosh, S. Tripathi, R.K. Singh, A.K. Ghosh, H.D. Yang, S. Chatterjee, Relaxor–super-paraelectric behaviour and crystal-field–driven spin-phonon coupling in pyrochlore Eu2Ti2O7. Europhys. Lett.. Lett. 137, 26003 (2022). https://doi.org/10.1209/0295-5075/ac2455

    Article  Google Scholar 

  35. R. Kumar, A. Sundaresan, Multiferroicity in a quasi-one-dimensional magnet MnSb2Se4. Mater. Res. Bull. 145, 111569 (2022). https://doi.org/10.1016/j.materresbull.2021.111569

    Article  CAS  Google Scholar 

  36. P.K. Gupta, S. Ghosh, S. Kumari, A. Pal, S. Roy, R. Singh, P. Singh, R.K. Singh, A.K. Ghosh, S. Chatterjee, Spin phonon coupling and magneto-dielectric coupling in BiFeO3–TbMnO3 composite. Mater. Res. Express. 6, 086114 (2019). https://doi.org/10.1088/2053-1591/ab2742

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors express sincere gratitude to the Central Instrumentation Facility Centre, Indian Institute of Technology (BHU) for their support of the magnetic measurement facility. Mohd Alam is thankful to the I-DAPT Hub Foundation, IIT (BHU) Varanasi for providing the Chanakya Post-doctoral Fellowship. The measurements were carried out using the Raman spectrometer (Model: In Via, Make-Renishaw, UK) available at the Department of Physics, the University of Calcutta (Procured under DST PURSE, Phase-2 Scheme).

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

SK: conceptualization, data curation, methodology, investigation, software, analysis, and writing—original draft preparation; MA: analysis, software, data curation; SD: data curation, LG: data curation, SG: data curation, PKG: software, JR: sample preparation, KA: software, formal analysis, NR: data curation and SM: data curation, AM: editing, AB: resources and SC: supervision, writing—review & editing, conceptualization.

Corresponding author

Correspondence to Sandip Chatterjee.

Ethics declarations

Conflict of interest

The authors have no competing interests to declare relevant to this article’s content.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumari, S., Alam, M., Dixit, S. et al. Spin-phonon coupling and giant dielectric constant in Bi0.5La0.5Fe0.4Al0.1Mn0.5O3. J Mater Sci: Mater Electron 34, 2142 (2023). https://doi.org/10.1007/s10854-023-11476-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-11476-6

Navigation