Abstract
In order to deeply understand the effect of annealing atmosphere on the structure and luminescence performance of ZnMgO films, self-made targets were used to prepare Mg incorporated ZnO thin films on quartz glass substrates in a nitrogen atmosphere at 400 °C using pulsed laser deposition (PLD) method. The prepared ZnMgO films were subsequently annealed in air and vacuum atmospheres at 500 °C, respectively. X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), energy-dispersive spectrometer (EDS) and X-ray photoelectron spectroscopy (XPS) were used to analyze the structure, morphology, elemental composition and chemical state of the film. The photoluminescence (PL) spectra were measured using a fluorescence spectrophotometer. The results revealed that both the as-prepared and annealed samples exhibited a hexagonal wurtzite structure with the (002) orientation. However, the annealed samples show different degrees of secondary orientation growth (SOG) due to the influence of annealing oxygen pressure. After air annealing, the SOG is more pronounced, resulting in larger grain size and a stronger (002) diffraction peak. After air annealing, the films were more prone to forming oxygen interstitials (Oi), while vacuum annealing favored the formation of zinc interstitials (Zni). The PL spectrum shows a strong ultraviolet emission peak (372–385 nm) and a weak red emission peak (730–760 nm), and the mechanisms behind these two emission peaks are discussed.
Similar content being viewed by others
Data availability
The data that support the findings of this study are available from the corresponding author, upon reasonable request.
References
N. Siregar, J.H. Motlan, M. Panggabean, J. Sirait, N.S. Rajagukguk, F.K. Gultom, Sabir, Int. J. Photoenergy (2021). https://doi.org/10.1155/2021/4033692
B. Kim, D. Lee, B. Hwang, D.J. Kim, C.K. Kim, Mol. Cryst. Liq. Cryst. 735, 61–74 (2022)
Q. Lin, F. Zhang, N. Zhao, P. Yang, Micromachines 13, 296 (2022)
Y. Wang, J. Song, H. Zhang, X. Zhang, G. Zheng, J. Xue, B. Han, X. Meng, F. Yang, J. Li, J. Alloys Compd. 822, 153688 (2020)
F.H. Wang, M.S. Chen, Y.L. Jiang, H.W. Liu, T.K. Kang, J. Alloys Compd. 897, 163174 (2022)
M.R. Vaezi, A. Shokuhfar, S.K. Sadrnezhaad, T. Shokuhfar, Int. J. Nanomanuf. 2, 59–69 (2008)
G. Gottardi, R. Pandiyan, V. Micheli, G. Pepponi, S. Gennaro, R. Bartali, N. Laidani, Mater. Sci. Eng. B 178, 609–616 (2013)
V. Dalouji, N. Rahimi, S.H. Elahi, Mol. Cryst. Liq. Cryst. 758, 11–24 (2023)
Y. Zhang, Y. Liu, L. Wu, H. Li, L. Han, B. Wang, E. Xie, Appl. Surf. Sci. 255, 4801–4805 (2009)
M. Baradaran, F.E. Ghodsi, C. Bittencourt, E. Llobet, J. Alloys Compd. 788, 289–301 (2019)
S. Shi, J. Xu, L. Li, Mater. Lett. 229, 178–181 (2018)
X. Long, X. Li, P.T. Lin, X.W. Cheng, Y. Liu, C.B. Cao, Chin. Phys. B 19, 027202 (2010)
H. Zhang, W. Li, G. Qin, H. Ruan, Z. Huang, F. Wu, C. Kong, L. Fang, Appl. Surf. Sci. 492, 392–398 (2019)
X. Li, Y. Wang, W. Liu, G. Jiang, C. Zhu, Mater. Lett. 85, 25–28 (2012)
N. Tu, B.H. Van, D. Trung, A.T. Duong, D. Thuy, D. Nguyen, K. Nguyen, P. Huy, J. Alloys Compd. 791, 722–729 (2019)
M. Bedrouni, B. Kharroubi, A. Ouerdane, M. Bouslama, M. Guezzoul, Y. Caudano, K.B. Bensassi, M. Bousmaha, M.A. Bezzerrouk, A. Mokadem, M. Abdelkrim, Opt. Mater. 111, 110560 (2021)
V.V. Kutwade, K.P. Gattu, A.S. Dive, M.E. Sonawane, D.A. Tonpe, R. Sharma, J. Mater, Sci.-Mater. El. 32, 6475–6486 (2021)
V.P. Singh, C. Rsth, RSC Adv. 5, 44390–44397 (2015)
H.W. Fang, J.Y. Juang, S.J. Liu, Int. J. Nanotechnol. 14, 992–1000 (2017)
B. Panigrahy, M. Aslam, D.S. Misra, M. Ghosh, D. Bahadur, Adv. Funct. Mater. 20, 1161–1165 (2010)
F. Kayaci, S. Vempati, I. Donmez, N. Biyikli, T. Uyar, Nanoscale 6, 10224–10234 (2014)
C. He, H.Y. Liu, J. Luo, W.J. Deng, R.G. Zhang, Y. Chen, J. Synth. Cryst. 51, 2071–2079 (2022)
F. Lekoui, S. Hassani, M. Ouchabane, H. Akkari, D. Dergham, W. Filali, E. Garoudja, Brazil. J. Phys. 51, 544–552 (2021)
A. Goktas, A. Tumbul, Z. Aba, M. Durgun, Thin Solid Films 680, 20–30 (2019)
V. Gupta, A. Mansingh, J. Appl. Phys. 80, 1063–1073 (1996)
X.J. Liu, C. Song, F. Zeng, X.B. Wang, F. Pan, J. Phys. D 40, 1608–1013 (2007)
C.J. Gawlak, C.R. Aita, J. Vac. Sci. Technol. A 1, 415–418 (1983)
H.J. Lee, C.Y. Chou, Z. Bi, C.F. Tsai, H. Wang, Nanotechnology 20, 395704 (2009)
P.R. Chithira, T.T. John, J. Magn. Magn. Mater. 496, 165928 (2020)
H. Pan, Y. Zhang, Y. Hu, H. Xie, Optik 208, 164560 (2020)
M. Abdelkrim, M. Guezzoul, M. Bedrouni, M. Bouslama, A. Ouerdane, B. Kharroubi, J. Alloys Compd. 920, 165703 (2022)
V.V. Petrov, V.V. Sysoev, A.P. Starnikova, M.G. Volkova, Z.K. Kalazhokov, V.Y. Storozhenko, S.A. Khubezhov, E.M. Bayan, Chemosensors 9, 124 (2021)
M.R. Alfaro Cruz, O. Ceballos-Sanchez, E. Luévano-Hipólito, L.M. Torres-Martínez, Int. J. Hydrog. Energy 43, 10301–10310 (2018)
S. Guan, L. Wang, Y. Tamamoto, M. Kato, Y. Lu, X. Zhao, J. Mater, Sci.-Mater. El. 32, 669–675 (2021)
W. Li, L. Fang, G. Qin, H. Ruan, H. Zhang, C. Kong, L. Ye, P. Zhang, F. Wu, J. Appl. Phys. 117, 145301 (2015)
M. Ilkhani, L. Dejam, J. Mater, Sci.-Mater. El. 32, 3460–3474 (2021)
L. Xu, J. Su, Y. Chen, G. Zheng, S. Pei, T. Sun, J. Wang, M. Lai, J. Alloys Compd. 548, 7–12 (2013)
C. Singh, E. Panda, RSC Adv. 6, 48910–48918 (2016)
C.C. Singh, E. Panda, J. Appl. Phys. 123, 165106 (2018)
D. Xiang, Z. Liu, M. Wu, H. Liu, X. Zhang, Z. Wang, Z.L. Wang, L. Li, Small 16, 1907603 (2020)
T.H. Kim, J.J. Park, S.H. Nam, H.S. Park, N.R. Cheong, J.K. Song, S.M. Park, Appl. Surf. Sci. 255, 5264–5266 (2009)
H.B. Fan, S.Y. Yang, P.F. Zang, H.Y. Wei, X.L. Liu, C.M. Jiao, Q.S. Zhu, Y.H. Chen, Z.G. Wang, Chin. Phys. Lett. 24, 2108 (2007)
F. Stavale, N. Nilius, H.J. Freund, J. Phys. Chem. Lett. 4, 3972–3976 (2013)
M. Wang, Y. Zhou, Y. Zhang, E.J. Kim, S.H. Hahn, S.G. Seong, Appl. Phys. Lett. 100, 101906 (2012)
Y. Xu, B. Bo, X. Gao, Z. Qiao, Crystals 9, 236 (2019)
T. Chen, G.Z. Xing, Z. Zhang, H.Y. Chen, T. Wu, Nanotechnology 19, 435711 (2008)
Funding
This work is supported by National Natural Science Foundation of China (Project No. 11975173).
Author information
Authors and Affiliations
Contributions
HL: provided ideas and guided the design of research plans, and JL: implemented the research process, collected and sorted out data and wrote a thesis. RZ, WD and CH: During the experiment, technical was supported.
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no conflicts of interest.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Luo, J., Liu, H., Deng, W. et al. Effect of annealing atmosphere on structure and photoluminescence of ZnMgO thin films. J Mater Sci: Mater Electron 34, 2172 (2023). https://doi.org/10.1007/s10854-023-11473-9
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s10854-023-11473-9