Skip to main content
Log in

Investigation of the structural, dielectric, and reflective characteristics of thermally stable magnesium titanate ceramics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

A series of substituted magnesium titanates with general formula (0.96 CoxMg1-xTiO3—0.04 ySrTiO3); (x = 0.00, 0.05, 0.075; y = 0.00, 1) was synthesized by auto-ignition combustion method. The effects of SrTiO3 addition on structural, dielectric and reflection properties of synthesized ceramics were investigated. A single-phase system with MgTiO3 as the major phase was confirmed by X-ray diffraction (XRD) examination of the generated compositions. In addition, a small amount of SrTiO3 was detected in the compositions y = 1.0. The MgTiO3 phase was found to have trigonal symmetry with space group R¯3 by Rietveld refinements., In contrast, the SrTiO3 phase exhibited cubic symmetry and a space group Pm¯3 m.The existence of 10 Raman active modes in all the compositions was confirmed by Raman Spectroscopy. However, it was observed that as the concentration of Co increased from composition x = 0.00 to x = 0.075 the modes were shifted toward higher wavenumber. The dielectric properties of all the studied samples were evaluated using an impedance analyzer at a frequency of 100 kHz. The composition 95 MCST (0.96 Mg0.95Co0.05 TiO3—0.04 SrTiO3) with (τf = 3.17 ppm/°C, tan δ = 1.97 × 10–3, and εr = 20.77 at a frequency of 100 kHz) had the most desirable set of dielectric characteristics. This composition also possesses more than 90% reflection for a bandwidth of 4.83 GHz and 1.36 GHz in the Ku and K frequency bands respectively. Due to its low-to- medium εr, low tan δ, almost zero τf, and favorable reflection properties, the 0.96 Mg0.95Co0.05TiO3 – 0.04 SrTiO3 composition can be used for 5G applications as well as a microwave absorber or shielder.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data availability

Yes.

Code availability

No.

References

  1. L. Li, X. Ding, Q. Liao, Reaction-sintering method for ultra-low loss (Mg0.95Co 0.05)TiO3 ceramics. J. Alloys Compd. 509, 7271–7276 (2011). https://doi.org/10.1016/j.jallcom.2011.04.062

    Article  CAS  Google Scholar 

  2. M.T. Sebastian, H. Jantunen, Low loss dielectric materials for LTCC applications: a review. Int. Mater. Rev. 53, 57–90 (2008). https://doi.org/10.1179/174328008X277524

    Article  CAS  Google Scholar 

  3. C.M. Kanamadi, S.R. Kulkarni, K.K. Patankar et al., Magnetoelectric and dielectric properties of Ni0.5Cu 0.5Fe2O4-Ba0.5Pb 0.5Ti0.5Zr0.5O3 ME composites. J. Mater. Sci. 42, 5080–5084 (2007). https://doi.org/10.1007/s10853-006-0594-6

    Article  CAS  Google Scholar 

  4. Y. Wang, H. Zhu, W. Bian et al., Inhibition of silver diffusion in LTCC by MgTiO3 addition. Ceram Int (2020). https://doi.org/10.1016/j.ceramint.2020.01.081

    Article  Google Scholar 

  5. Y. Ota, K. Kakimoto, H. Ohsato, T. Okawa, Low-temperature sintering of Ba6-3xSm8+2x Ti18O54 microwave dielectric ceramics by B2O3 and GeO2 addition. J. Eur. Ceram. Soc. 24, 1755–1760 (2004). https://doi.org/10.1016/S0955-2219(03)00594-6

    Article  CAS  Google Scholar 

  6. C.L. Huang, J.Y. Chen, G.S. Huang, A new low-loss dielectric using CaTiO3-modified (Mg0.95Mn0.05)TiO3 ceramics for microwave applications. J. Alloys Compd. 499, 48–52 (2010). https://doi.org/10.1016/j.jallcom.2010.01.014

    Article  CAS  Google Scholar 

  7. E. Roman, A.S. Zeraati, H. Xd et al., Fields and the. Am. J. Epidemiol. 7, 3–4 (1995). https://doi.org/10.1016/B978-0-12-817590-3.00021-X

    Article  Google Scholar 

  8. R. Pandey, S. Tekumalla, M. Gupta, EMI shielding of metals, alloys, and composites (Elsevier Inc, The Netherlands, 2020)

    Book  Google Scholar 

  9. S. Geetha, K.K.S. Kumar, C.R.K. Rao et al., EMI shielding: methods and materials—a review. J. App. Pol. Sci. 112, 2073–2086 (2009). https://doi.org/10.1002/app.29812

    Article  CAS  Google Scholar 

  10. M.T. Sebastian, R. Ubic, H. Jantunen, Low-loss dielectric ceramic materials and their properties. Int. Mater. Rev. 60, 392–412 (2015). https://doi.org/10.1179/1743280415Y.0000000007

    Article  CAS  Google Scholar 

  11. T. Tuval, B.A. Rosen, R.Z. Shneck et al., Thermal expansion of MgTiO3 made by sol-gel technique at temperature range 25–890 °C. Crystals 10, 1–11 (2020). https://doi.org/10.3390/cryst10100887

    Article  CAS  Google Scholar 

  12. C.L. Huang, J.J. Wang, Y.P. Chang, Dielectric properties of low loss (1–x)(Mg0.95Zn 0.05)TiO3-xSrTiO3 ceramic system at microwave frequency. J. Am. Ceram. Soc. 90, 858–862 (2007). https://doi.org/10.1111/j.1551-2916.2006.01472.x

    Article  CAS  Google Scholar 

  13. C.Y. Bin, The dielectric properties of 0.85MgTiO3-0.15Ca0.6La0.8/3TiO3 with ZnO additions for microwave applications. J. Alloys Compd. 477, 883–887 (2009). https://doi.org/10.1016/j.jallcom.2008.11.013

    Article  CAS  Google Scholar 

  14. P. Gogoi, T. Santhosh Kumar, P. Sharma, D. Pamu, Structural, optical, dielectric and electrical studies on RF sputtered nanocrystalline Zr doped MgTiO3thin films. J. Alloys Compd. 619, 527–537 (2015). https://doi.org/10.1016/j.jallcom.2014.09.077

    Article  CAS  Google Scholar 

  15. W. Dong, B. Li, Y. Li et al., General approach to well-defined perovskite MTiO3 (M = Ba, Sr, Ca, and Mg) nanostructures. J. Phys. Chem. C 115, 3918–3925 (2011). https://doi.org/10.1021/jp110660v

    Article  CAS  Google Scholar 

  16. C.Y. Hsiao, C.F. Shih, C.H. Chien, C.L. Huang, Textured magnesium titanate as gate oxide for GaN-based metal-oxide-semiconductor capacitor. J. Am. Ceram. Soc. 94, 1005–1007 (2011). https://doi.org/10.1111/j.1551-2916.2011.04439.x

    Article  CAS  Google Scholar 

  17. S. Zeng, G. Ni, X. Kuang, Tuning the temperature coefficient of resonant frequency for 8-layer twinned hexagonal perovskite Ba8ZnTa6O24 ceramics. J. Mater. Sci. Mater. Electron. 27, 10078–10081 (2016). https://doi.org/10.1007/s10854-016-5081-5

    Article  CAS  Google Scholar 

  18. S.G. Kryvdik, Geochemical features of ilmenites from the alkaline complexes of the Ukrainian Shield: LA-ICP MS data. Geochem. Int. 52, 287–295 (2014). https://doi.org/10.1134/S0016702914040041

    Article  CAS  Google Scholar 

  19. J.H. Sohn, Y. Inaguma, S.O. Yoon et al., Microwave dielectric characteristics of ilmenite-type titanates with high Q values. Jpn. J. Appl. Phys. 33, 5466–5470 (1994)

    Article  CAS  Google Scholar 

  20. K.P. Surendran, A. Wu, P.M. Vilarinho, V.M. Ferreira, Ni and Zn doped MgTiO3 thin films: structure, microstructure, and dielectric characteristics. J. Appl. Phys. (2010). https://doi.org/10.1063/1.3356938

    Article  Google Scholar 

  21. T. Santhosh Kumar, P. Gogoi, A. Perumal et al., Effect of cobalt doping on the structural, microstructure and microwave dielectric properties of MgTiO3 ceramics prepared by semi alkoxide precursor method. J. Am. Ceram. Soc. 97, 1054–1059 (2014). https://doi.org/10.1111/jace.12851

    Article  CAS  Google Scholar 

  22. C.L. Huang, C.F. Tasi, C.Y. Bin, Y.C. Cheng, New dielectric material system of (Mg0.95Zn0.05)TiO3-Ca0.61Nd0.26TiO3 at microwave frequency. J. Alloys Compd. 453, 337–340 (2008). https://doi.org/10.1016/j.jallcom.2006.11.084

    Article  CAS  Google Scholar 

  23. C.F. Tseng, T.C. Wei, S.C. Lu, Influence of A-site Ba substitution on microwave dielectric properties of (BaxMg1-x)(A0.05Ti0.95)O 3 (A=Zr, Sn) ceramics. Ceram. Int. 40, 7081–7085 (2014). https://doi.org/10.1016/j.ceramint.2013.12.040

    Article  CAS  Google Scholar 

  24. H. Ohsato, E. Koga, I. Kagomiya, K.I. Kakimoto, Dense composition with high Q on the complex perovskite compounds. Ferroelectrics 387, 28–35 (2009). https://doi.org/10.1080/00150190902966198

    Article  CAS  Google Scholar 

  25. H. Ohsato, N. Ozaki, K. Ohnuma et al., Solubility of Ho ions in Ho and Mg Co-doped BaTiO3 analyzed by rietveld method and EXAFS. Ferroelectrics 302, 265–270 (2004). https://doi.org/10.1080/00150190490454981

    Article  CAS  Google Scholar 

  26. X.S. Li, X. Chen, H. Sun et al., Perovskite for the highly selective enrichment of phosphopeptides. J. Chromatogr. A 1376, 143–148 (2015). https://doi.org/10.1016/j.chroma.2014.12.036

    Article  CAS  Google Scholar 

  27. E. Korkmaz, N.O. Kalaycioglu, V. Emir Kafadar, Yellow phosphors doping with Gd3+, Tb3+ and Lu 3+ in MTiO3 (M = Mg and Sr) luminescence properties. Bull. Mater. Sci. 36, 1079–1086 (2013). https://doi.org/10.1007/s12034-013-0562-0

    Article  CAS  Google Scholar 

  28. D. Xu, K. He, B. Chen et al., Microstructure and electric characteristics of AETiO3 (AE=Mg, Ca, Sr) doped CaCu3Ti4O12 thin films prepared by the sol-gel method. Prog Nat Sci Mater Int 25, 399–404 (2015). https://doi.org/10.1016/j.pnsc.2015.09.015

    Article  CAS  Google Scholar 

  29. C.L. Huang, J.Y. Chen, C.C. Liang, Dielectric properties and mixture behavior of Mg4Nb2O9-SrTiO3 ceramic system at microwave frequency. J. Alloys Compd. 478, 554–558 (2009). https://doi.org/10.1016/j.jallcom.2008.11.089

    Article  CAS  Google Scholar 

  30. S. Ahn, Y. Lee, Y. Roh et al., Electrical characterizations of MgTiO3 thin films grown on Si. Integr. Ferroelectr. (2000). https://doi.org/10.1080/10584580008215669

    Article  Google Scholar 

  31. H.J. Jo, E. Soo, Enhanced quality factor of MgTiO 3 ceramics by isovalent Ti-site substitution. Ceram. Int. (2016). https://doi.org/10.1016/j.ceramint.2015.12.096

    Article  Google Scholar 

  32. P.J. Wang, D. Zhou, J. Li et al., Significantly enhanced electrostatic energy storage performance of P(VDF-HFP)/BaTiO3-Bi(Li0.5Nb0.5)O3 nanocomposites. Nano Energy 78, 105247 (2020). https://doi.org/10.1016/j.nanoen.2020.105247

    Article  CAS  Google Scholar 

  33. K. Sharma, S. Bahel, Effect of Co substitution on the structural, dielectric and reflection properties of MgTiO3 solid solutions. Mater. Res. Bull. 157, 112037 (2023). https://doi.org/10.1016/j.materresbull.2022.112037

    Article  CAS  Google Scholar 

  34. Y. Sakai, T. Futakuchi, M. Adachi, Preparation of (1—X)(Ba, Sr)TiO3-xMgTiO3 based thick films by inkjet printing. Jpn. J. Appl. Phys. 46, 6920–6924 (2007). https://doi.org/10.1143/JJAP.46.6920

    Article  CAS  Google Scholar 

  35. K.I. Kakimoto, I. Masuda, T. Hibino, H. Ohsato, Single-crystalline KNbO3thin film grown by liquid phase epitaxy. J. Electroceram. 13, 579–583 (2004). https://doi.org/10.1007/s10832-004-5161-4

    Article  CAS  Google Scholar 

  36. J.J. Wang, C.H. Wang, T.K. Hsu, Investigation of (1–x)(Mg0.6Zn0.4) 0.95Co0.05TiO3-xSrTiO3 microwave dielectrics. Jpn. J. Appl. Phys. 48, 0814021–0814024 (2009). https://doi.org/10.1143/JJAP.48.081402

    Article  CAS  Google Scholar 

  37. W.W. Cho, K.I. Kakimoto, H. Ohsato, Microwave dielectric properties and low-temperature sintering of MgTiO 3-SrTiO3 ceramics with B2O3 or CuO. Mater Sci Eng B Solid-State Mater Adv Technol 121, 48–53 (2005). https://doi.org/10.1016/j.mseb.2005.02.061

    Article  CAS  Google Scholar 

  38. L. Zhu, M. Wang, J. Dang, Investigations of EPR Parameters of MgTiO3:Cr3+, SrTiO3:Cr3+, and SrTiO3:Mn4+ Crystals. Appl. Magn. Reson. 41, 45–50 (2011). https://doi.org/10.1007/s00723-011-0235-3

    Article  CAS  Google Scholar 

  39. C.F. Tseng, S.C. Lu, Influence of SrTiO3 modification on dielectric properties of Mg(Zr0.05Ti0.95)O3 ceramics at microwave frequency. Mater Sci Eng B Solid-State Mater Adv Technol 178, 358–362 (2013). https://doi.org/10.1016/j.mseb.2013.01.003

    Article  CAS  Google Scholar 

  40. K. Sharma, S. Bahel, Structural, dielectric and reflection analysis of ZnxMg1−xTiO3 ceramics synthesized using auto-ignition combustion method. J. Mater. Sci. Mater. Electron. 32, 27216–27231 (2021). https://doi.org/10.1007/s10854-021-07088-7

    Article  CAS  Google Scholar 

  41. C.H. Wang, X.P. Jing, W. Feng, J. Lu, Assignment of Raman-active vibrational modes of MgTiO3. J. Appl. Phys. (2008). https://doi.org/10.1063/1.2966717

    Article  Google Scholar 

  42. F. Liu, J. Qu, C. Yuan et al., Correlation between dielectric loss, microstructures and phase structures in a novel Mgn+1TinO3n+1 microwave ceramic system. Mater. Chem. Phys. 198, 35–41 (2017). https://doi.org/10.1016/j.matchemphys.2017.05.048

    Article  CAS  Google Scholar 

  43. R.D. Shannon, Dielectric polarizabilities of ions in oxides and fluorides. J. Appl. Phys. 73, 348–366 (1993). https://doi.org/10.1063/1.353856

    Article  CAS  Google Scholar 

  44. W.W. Cho, K.I. Kakimoto, H. Ohsato, High-Q microwave dielectric SrTiO3-doped MgTiO3 materials with near-zero temperature coefficient of resonant frequency. Jpn. J. Appl. Phys. 43, 6221–6224 (2004). https://doi.org/10.1143/JJAP.43.6221

    Article  CAS  Google Scholar 

  45. J. Singh, S. Bahel, (BaxMg1-x) (Ti0.95Sn0.05)O3 (x = 0.025, 0.05, 0.075 and 0.1) solid solutions as effective Ku-band (12.4–18 GHz) shielders. Ceram. Int. 46, 15206–15213 (2020). https://doi.org/10.1016/j.ceramint.2020.03.057

    Article  CAS  Google Scholar 

Download references

Funding

This work is financially supported by the Ministry of Electronics and Information Technology (MeitY), Government of India. [Grant No.: MEITY-PHD-2742].

Author information

Authors and Affiliations

Authors

Contributions

KS: Synthesis and Characterization, Software, Data Analysis, Writing. HK and SB: Review, edit, and supervised the whole manuscript.

Corresponding author

Correspondence to Shalini Bahel.

Ethics declarations

Conflict of interest

The authors have not disclosed any competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, K., Kaur, H. & Bahel, S. Investigation of the structural, dielectric, and reflective characteristics of thermally stable magnesium titanate ceramics. J Mater Sci: Mater Electron 34, 2135 (2023). https://doi.org/10.1007/s10854-023-11466-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-11466-8

Navigation