Skip to main content
Log in

Effect of Li-ion doping on structural, optical and electrochemical properties of V2O5

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In the present study, lithium doped vanadium pentoxide LixV2O5 (0.2 ≤ x ≤ 0.8) specimens have been prepared by the solid-state synthesis method, which possesses an ionic and electronic conducting nature. Lithium incorporates vanadium pentoxide to increase electrical conductivity as well as to enhance energy storage capacity. The undoped V2O5 samples show orthorhombic structures, which are slightly tilted towards monoclinic due to lithium doping. These structural and compositional studies have been carried out using X-ray diffraction spectra and X-ray photoelectron spectroscopy. The stretching and vibrational modes of prepared samples are obtained by Fourier Transform Infrared Spectrometer. The significant shifting of optical absorption is observed and hence the optical energy band decreases from 3.37 to 2.44 eV for the present specimens. Electrochemical analysis in the potential window of −0.5 to 0.5 V (scan rate of 5 mV/s) with 2 M KCl electrolyte solution is conducted to get maximum specific capacitance of 529 Fg−1 for Li0.2V1.8O4.6 specimen. The first and fifth cycles of Cyclic Voltammetry suggest that the charging and discharging of LixV2O5 are in accordance with doped component proportion. The dielectric parameters have been recorded with a frequency response of 10 Hz to 1 MHz. The ac conductivity data has been interpreted by Jonscher’s power law.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data availability

Data will be made available on reasonable request.

References

  1. Y. Sun, Z. Xie, Y. Li, RSC Adv. 8, 39371 (2018). https://doi.org/10.1039/c8ra07326k

    Article  CAS  Google Scholar 

  2. S.H. Chun, H.Y. Kim, H. Jang, Y. Lee, A. Jo, N.S. Lee, H.K. Yu, Y. Lee, M.H. Kim, C. Lee, CrystEngComm 19, 3455 (2017). https://doi.org/10.1039/c7ce00637c

    Article  CAS  Google Scholar 

  3. C.K. Christensen, D.R. Sørensen, J. Hvam, D.B. Ravnsbæk, Chem. Mater. 31, 512 (2019)

    Article  CAS  Google Scholar 

  4. X. Huang, X. Rui, H.H. Hng, Q. Yan, Part. Part. Syst. Charact. 32, 276 (2015)

    Article  CAS  Google Scholar 

  5. A. Langar, N. Sdiri, H. Elhouichet, M. Ferid, Eur. Phys. J. Plus (2016). https://doi.org/10.1140/epjp/i2016-16421-y

    Article  Google Scholar 

  6. L. Mai, Q. An, Q. Wei, J. Fei, P. Zhang, X. Xu, Y. Zhao, M. Yan, W. Wen, L. Xu, Small 10, 3032 (2014). https://doi.org/10.1002/smll.201302991

    Article  CAS  Google Scholar 

  7. S. Kumar, S.D. Bukkitgar, S. Singh, Pratibha, V. Singh, K.R. Reddy, N.P. Shetti, C.V. Reddy, V. Sadhu, S. Naveen, ChemistrySelect 4, 5322 (2019)

    Article  CAS  Google Scholar 

  8. A. Sakunthala, M.V. Reddy, S. Selvasekarapandian, B.V.R. Chowdari, P.C. Selvin, Energy Environ. Sci. 4, 1712 (2011)

    Article  CAS  Google Scholar 

  9. T.M. Tolhurst, B. Leedahl, J.L. Andrews, S. Banerjee, A. Moewes, J. Mater. Chem. A 5, 23694 (2017)

    Article  CAS  Google Scholar 

  10. A. Dey, M.K. Nayak, A.C.M. Esther, M.S. Pradeepkumar, D. Porwal, A.K. Gupta, P. Bera, H.C. Barshilia, A.K. Mukhopadhyay, A.K. Pandey, K. Khan, M. Bhattacharya, D.R. Kumar, N. Sridhara, A.K. Sharma, Sci. Rep. 6, 1 (2016). https://doi.org/10.1038/srep36811

    Article  CAS  Google Scholar 

  11. M. Liu, B. Su, Y. Tang, X. Jiang, A. Yu, Adv. Energy Mater. 7, 1 (2017). https://doi.org/10.1002/aenm.201700885

    Article  CAS  Google Scholar 

  12. Y. Lu, L. Liu, D. Mandler, P.S. Lee, J. Mater. Chem. C 1, 7380 (2013)

    Article  CAS  Google Scholar 

  13. X. Liu, J. Zeng, H. Yang, K. Zhou, D. Pan, RSC Adv. 8, 4014 (2018). https://doi.org/10.1039/c7ra12523b

    Article  CAS  Google Scholar 

  14. W. Zhong, J. Huang, S. Liang, J. Liu, Y. Li, G. Cai, Y. Jiang, J. Liu, ACS Energy Lett. 5, 31 (2020)

    Article  CAS  Google Scholar 

  15. I. Mjejri, A. Rougier, M. Gaudon, Inorg. Chem. 56, 1734 (2017)

    Article  CAS  Google Scholar 

  16. J.N. Spencer, A. Folli, H. Ren, D.M. Murphy, J. Mater. Chem. A 9, 16917 (2021). https://doi.org/10.1039/d1ta02352g

    Article  CAS  Google Scholar 

  17. M. Yuan, Y. Li, Q. Chen, C. Chen, X. Liu, W. Zeng, R. Wang, S. Xiao, Electrochim. Acta 323, 134822 (2019)

    Article  CAS  Google Scholar 

  18. D. McNulty, D.N. Buckley, C. O’Dwyer, J. Power. Sources 267, 831 (2014)

    Article  CAS  Google Scholar 

  19. X. Zhang, X. Sun, X. Li, X. Hu, S. Cai, C. Zheng, J. Energy Chem. 59, 343 (2021). https://doi.org/10.1016/j.jechem.2020.11.022

    Article  CAS  Google Scholar 

  20. Z. Zhang, G. Yao, X. Zhang, J. Ma, H. Lin, Ceram. Int. 41, 4523 (2015)

    Article  CAS  Google Scholar 

  21. K.P. Thummer, A.R. Tanna, H.H. Joshi, A.I.P. Conf, Proc. 1837, 1 (2017)

    Google Scholar 

  22. A.R. Tanna, S.S. Srinivasan, H.H. Joshi, J. Mater. Sci. Mater. Electron. 31, 9306 (2020)

    Article  CAS  Google Scholar 

  23. V. Balasubramani, J. Chandrasekaran, T.D. Nguyen, S. Maruthamuthu, R. Marnadu, P. Vivek, S. Sugarthi, Sens. Actuators A Phys. 315, 112333 (2020)

    Article  CAS  Google Scholar 

  24. B. Hu, L. Li, X. Xiong, L. Liu, C. Huang, D. Yu, C. Chen, J. Solid State Electrochem. 23, 1315 (2019). https://doi.org/10.1007/s10008-019-04220-w

    Article  CAS  Google Scholar 

  25. V. Mounasamy, G. Srividhya, N. Ponpandian, Energy Adv (2023). https://doi.org/10.1039/d3ya00100h

    Article  Google Scholar 

  26. X. Li, Y. Su, X. Lang, L. Li, C. Yao, K. Cai, Ionics (Kiel). 28, 1511 (2022)

    Article  CAS  Google Scholar 

  27. B. Bera, P. Sekhar Das, M. Bhattacharya, S. Ghosh, A.K. Mukhopadhyay, A. Dey, J. Phys. D Appl. Phys. 49, 085303 (2016)

    Article  Google Scholar 

  28. M.F.G. Huila, H.E. Toma, Electrochim. Acta 278, 236 (2018)

    Article  CAS  Google Scholar 

  29. J. Huang, H. Liu, T. Hu, Y.S. Meng, J. Luo, J. Power. Sources 375, 21 (2018)

    Article  CAS  Google Scholar 

  30. A. Caballero, M. Cruz, L. Hernán, M. Melero, J. Morales, E.R. Castellón, J. Electrochem. Soc. 152, A552 (2005)

    Article  CAS  Google Scholar 

  31. G. Bodurov, T. Ivanova, K. Gesheva, Phys. Procedia 46, 149 (2013)

    Article  CAS  Google Scholar 

  32. Y. Chai, F.Y. Ha, F.K. Yam, Z. Hassan, Procedia Chem. 19, 113 (2016). https://doi.org/10.1016/j.proche.2016.03.123

    Article  CAS  Google Scholar 

  33. T. Ivanova, A. Harizanova, T. Koutzarova, N. Krins, B. Vertruyen, Mater. Sci. Eng. B Solid-State Mater. Adv. Technol. 165, 212 (2009). https://doi.org/10.1016/j.mseb.2009.07.013

    Article  CAS  Google Scholar 

  34. S.D. Rezaei, S. Shannigrahi, S. Ramakrishna, Sol. Energy Mater. Sol. Cells 159, 26 (2017)

    Article  CAS  Google Scholar 

  35. B.T. Rao, S. Cole, Rasayan J. Chem. 12, 1557 (2019)

    Article  CAS  Google Scholar 

  36. Y. Feng, S. Lin, S. Huang, S. Shrestha, G. Conibeer, Y. Feng, S. Lin, S. Huang, S. Shrestha, G. Conibeer, J. Appl. Phys. 117, 125701 (2015). https://doi.org/10.1063/1.4916090

    Article  CAS  Google Scholar 

  37. P. Jani, H. Desai, B.S. Madhukar, A. Tanna, Mater. Res. Innov. 26, 189 (2022)

    Article  CAS  Google Scholar 

  38. M. Rafique, M. Hamza, M.B. Tahir, S. Muhammad, A.G. Al-Sehemi, J. Mater. Sci. Mater. Electron. 31, 12913 (2020)

    Article  CAS  Google Scholar 

  39. H. Shen, I.R. Ie, C.S. Yuan, C.H. Hung, W.H. Chen, Environ. Sci. Pollut. Res. 23, 5839 (2016)

    Article  CAS  Google Scholar 

  40. M.N. Siddique, A. Ahmed, T. Ali, P. Tripathi, AIP Conf. Proc. (2018). https://doi.org/10.1063/1.5032362

    Article  Google Scholar 

  41. K. Schneider, J. Mater. Sci. Mater. Electron. 31, 10478 (2020)

    Article  CAS  Google Scholar 

  42. R. Vijaya Kumar, Y. Diamant, A. Gedanken, Chem. Mater. 12, 2301 (2000)

    Article  Google Scholar 

  43. S.T. Akinkuade, W.E. Meyer, J.M. Nel, Physica B Condens. Matter 575, 411694 (2019). https://doi.org/10.1016/j.physb.2019.411694

    Article  CAS  Google Scholar 

  44. J. Zhou, Y. Gao, Z. Zhang, H. Luo, C. Cao, Z. Chen, L. Dai, X. Liu, Sci. Rep. 3, 1 (2013). https://doi.org/10.1038/srep03029

    Article  Google Scholar 

  45. S. Khan, K. Singh, Sci. Rep. 10, 1 (2020). https://doi.org/10.1038/s41598-020-57836-8

    Article  CAS  Google Scholar 

  46. A. Sawaby, M.S. Selim, S.Y. Marzouk, M.A. Mostafa, A. Hosny, Physica B Condens. Matter 405, 3412 (2010). https://doi.org/10.1016/j.physb.2010.05.015

    Article  CAS  Google Scholar 

  47. S. Kim, M. Taya, C. Xu, J. Electrochem. Soc. 156, 40 (2009)

    Article  Google Scholar 

  48. N. Guru Prakash, M. Dhananjaya, B. Purusottam Reddy, K. Sivajee Ganesh, A. Lakshmi Narayana, O.M. Hussain, Mater. Today Proc. 3, 4076 (2016)

    Article  Google Scholar 

  49. K.Y. Pan, D.H. Wei, Nanomaterials 6, 140 (2016)

    Article  Google Scholar 

  50. G. Wee, H.Z. Soh, Y.L. Cheah, S.G. Mhaisalkar, M. Srinivasan, J. Mater. Chem. 20, 6720 (2010)

    Article  CAS  Google Scholar 

  51. Y. Zhang, J. Zheng, Q. Wang, T. Hu, C. Meng, RSC Adv. 6, 93741 (2016). https://doi.org/10.1039/c6ra16262b

    Article  CAS  Google Scholar 

  52. J. Zheng, Y. Zhang, X. Jing, Q. Wang, T. Hu, N. Xing, C. Meng, Mater. Chem. Phys. 186, 5 (2017)

    Article  CAS  Google Scholar 

  53. D. Majumdar, M. Mandal, S.K. Bhattacharya, ChemElectroChem 6, 1623 (2019)

    Article  CAS  Google Scholar 

  54. Z.J. Lao, K. Konstantinov, Y. Tournaire, S.H. Ng, G.X. Wang, H.K. Liu, J. Power. Sources 162, 1451 (2006)

    Article  CAS  Google Scholar 

  55. H.M. El-Mallah, Acta Phys. Pol. A 122, 174 (2012)

    Article  CAS  Google Scholar 

  56. I.S. Elashmawi, N.S. Alatawi, N.H. Elsayed, Results Phys. 7, 636 (2017)

    Article  Google Scholar 

  57. N.A. Hegab, H.M. El-mallah, Acta Phys. Pol. A 116, 1048 (2009)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

MAB is thankful to Dr. G. M. Sutariya, Sir P. P. Institute of Science, Bhavnagar for providing lab facilities and technical support.

Funding

The authors declare that there are no funds, grants, or other support are available during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All authors have participated in the conception and design, analysis, and interpretation of the data. The drafting of the article or revising is done by all authors. A final manuscript was read and approved by all authors.

Corresponding author

Correspondence to Ashish R. Tanna.

Ethics declarations

Conflict of interest

We declare the authors of the article “Effect of Li-ion doping on structural, optical and electrochemical properties of V2O5” have no conflict of interest. There is no financial support available for this work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhatt, M.A., Tanna, A.R. Effect of Li-ion doping on structural, optical and electrochemical properties of V2O5. J Mater Sci: Mater Electron 34, 2146 (2023). https://doi.org/10.1007/s10854-023-11462-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-11462-y

Navigation