Skip to main content

Advertisement

Log in

Structural, dielectric, and electrical properties of cerium-modified strontium manganite ceramics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

This study presents a comprehensive analysis of SrMn0.9Ce0.1O3 (SMCO), synthesized via a high-temperature solid-state reaction method, unveiling its structural and electronic properties. The X-ray structural analysis reveals a distorted perovskite structure with hexagonal symmetry, supported by Goldschmidt's tolerance factor (0.95) and SISCO tolerance factor (4.02). The diffraction pattern analysis indicates an average crystallite size of 77.8 nm,  incorporated by the W–H plot with k = 0.89. SEM study reveals a calculated average grain size of approximately 19.2 μm in Ce-modified SMO ceramics. X-ray photoelectron spectroscopy confirms the presence of Mn4+ and Ce4+ oxidation states in SMCO. Notably, a decrease in bulk resistance (Rb) from 1.020 × 105 Ω at 25 °C to 1.096 × 103 Ω at 500 °C suggests a negative temperature coefficient of resistance or semiconductor behaviour, corroborated by Z′ and Z″ plots. The material exhibits a coercivity of  2.257 kV/cm, remanent polarization of  0.041 μC/cm2, maximum electric field of  7.38 kV/cm, and maximum polarization of 0.215 μC/cm2, hinting at potential ferroelectric properties. With an optical bandgap energy of 4.53 eV for direct allowed transitions, SMCO holds promise for photovoltaic applications. Furthermore, the study indicates NTC thermistor and Ohmic conduction characteristics at selected temperatures, suggesting potential applications in electronic devices. This multifaceted analysis underscores the material's versatility and potential across a range of technological applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data availability

All data generated or analysed during this study are included in this published article.

References

  1. M.J. Bin Abu, R.A. Zaman, M.F. Ab Rahman, M. Ahmadipour, J.J. Mohamed, M.F. Ain, Z.A. Ahmad, Mater. Sci. Forum 12–16 (2017)

  2. M. Ahmadipour, M. Arjmand, M.F. Ain, Z.A. Ahmad, S.Y. Pung, J. Mater. Sci. Mater. Electron. 30, 6806 (2019)

    Article  CAS  Google Scholar 

  3. M.J. Abu, M.F.A. Rahman, R.A. Zaman, M. Ahmadipour, J.J. Mohamed, M.F. Ain, Z.A. Ahmad, Procedia Chem. 19, 929 (2016)

    Article  CAS  Google Scholar 

  4. G.H. Jonker, J.H. Van Santen, Physica 16, 337 (1950)

    Article  CAS  Google Scholar 

  5. J. Jouannaux, A. Haeussler, M. Drobek, A. Ayral, S. Abanades, A. Julbe, Ceram. Int. 45, 15636 (2019)

    Article  Google Scholar 

  6. S. Hashimoto, H. Iwahara, Mater. Res. Bull. 35, 2253 (2000)

    Article  CAS  Google Scholar 

  7. S. Hashimoto, H. Iwahara, J. Electroceram. 4, 225 (2000)

    Article  CAS  Google Scholar 

  8. K.J. Lee, E. Iguchi, J. Solid State Chem. 114, 242 (1995)

    Article  CAS  Google Scholar 

  9. C. Jeong, J. Ryu, T. Noh, Y.-N. Kim, H. Lee, Adv. Appl. Ceram. 112, 494 (2013)

    Article  CAS  Google Scholar 

  10. J. Ryu, H. Lee, Appl. Phys. Lett. 105, 111903 (2014)

    Article  Google Scholar 

  11. J. Ryu, R. O’Hayre, H. Lee, Solid State Ion. 260, 60 (2014)

    Article  CAS  Google Scholar 

  12. Z. Zeng, Y. Xu, Z. Zhang, Z. Gao, M. Luo, Z. Yin, C. Zhang, J. Xu, B. Huang, F. Luo et al., Chem. Soc. Rev. 49, 1109 (2020)

    Article  CAS  Google Scholar 

  13. R. Sun, D. Zhou, H. Song, Nano Sel. 3, 531 (2022)

    Article  CAS  Google Scholar 

  14. C. Xia, C. Hu, P. Chen, B. Wan, X. He, Y. Tian, Mater. Res. Bull. 45, 794 (2010)

    Article  CAS  Google Scholar 

  15. D. Dash, N.R. Panda, D. Sahu, Nano Express 2, 10007 (2021)

    Article  Google Scholar 

  16. N.R. Panda, B.S. Acharya, T.B. Singh, R.K. Gartia, J. Lumin. 136, 369 (2013)

    Article  CAS  Google Scholar 

  17. A. Trovarelli, Catal. Rev. 38, 439 (1996)

    Article  CAS  Google Scholar 

  18. B. Weckhuysen, M. Rosynek, J. Lunsford, Phys. Chem. Chem. Phys. 1, 3157 (1999)

    Article  CAS  Google Scholar 

  19. F. Yang, J. Wei, W. Liu, J. Guo, Y. Yang, J. Mater. Chem. A 2, 5662 (2014)

    Article  CAS  Google Scholar 

  20. S. Tsunekawa, T. Fukuda, A. Kasuya, J. Appl. Phys. 87, 1318 (2000)

    Article  CAS  Google Scholar 

  21. E.I. Konstantinova, A.A. Markov, M.A. Ryzhkov, I.A. Leonidov, Solid State Sci. 134, 107024 (2022)

    Article  CAS  Google Scholar 

  22. J. Yue, L. Cheng, J. Xiong, Q. Yao, M. Wang, Y. Chen, Q. Long, X. Guo, Effect of Nd doping on structure, magnetic properties and microwave absorption performance of SrMnO3. J Rare Earth. (2023). https://doi.org/10.1016/j.jre.2023.03.002

  23. Q. Yang, X. Wang, H. Wang, X. Li, Q. Li, Y. Wu, Y. Peng, Y. Ma, J. Li, Appl. Catal. B 320, 121993 (2023)

    Article  CAS  Google Scholar 

  24. S. Gholamrezaei, M. Salavati-Niasari, Ultrason. Sonochem. 40, 651 (2018)

    Article  CAS  Google Scholar 

  25. I.A. Abdel-Latif, L.A. Al-Hajji, M. Faisal, A.A. Ismail, Sci. Rep. 9, 1 (2019)

    Article  CAS  Google Scholar 

  26. A.K. Mandal, G. Panchal, R.J. Choudhary, D.M. Phase, AIP Conf. Proc. 1953, 100035 (2018)

  27. J.W. Guo, P.S. Wang, Y. Yuan, Q. He, J.L. Lu, T.Z. Chen, S.Z. Yang, Y.J. Wang, R. Erni, M.D. Rossell et al., Phys. Rev. B 97, 235135 (2018)

    Article  CAS  Google Scholar 

  28. A.K. Mandal, G. Panchal, S. Chowdhury, A. Jana, R.J. Choudhary, D.M. Phase, J. Supercond. Nov. Magn. 33, 1633 (2020)

    Article  CAS  Google Scholar 

  29. S. Kamba, V. Goian, V. Skoromets, J. Hejtmánek, V. Bovtun, M. Kempa, F. Borodavka, P. Vaněk, A.A. Belik, J.H. Lee, O. Pacherová, K.M. Rabe, Phys. Rev. B 89 (2014)

  30. C.J. Bartel, C. Sutton, B.R. Goldsmith, R. Ouyang, C.B. Musgrave, L.M. Ghiringhelli, M. Scheffler, Sci. Adv. 5, eaav0693 (2019)

  31. S.R. Xie, P. Kotlarz, R.G. Hennig, J.C. Nino, Comput. Mater. Sci. 180, 109690 (2020)

    Article  CAS  Google Scholar 

  32. A. Altomare, C. Cuocci, C. Giacovazzo, A. Moliterni, R. Rizzi, N. Corriero, A. Falcicchio, J. Appl. Crystallogr. 46, 1231 (2013)

    Article  CAS  Google Scholar 

  33. N. Rezlescu, E. Rezlescu, P.D. Popa, C. Doroftei, M. Ignat, Mater. Chem. Phys. 182, 332 (2016)

    Article  CAS  Google Scholar 

  34. G. George, S.L. Jackson, C.Q. Luo, D. Fang, D. Luo, D. Hu, J. Wen, Z. Luo, Ceram. Int. 44, 21982 (2018)

    Article  CAS  Google Scholar 

  35. G.K. Williamson, W.H. Hall, Acta Metall. 1, 22 (1953)

    Article  CAS  Google Scholar 

  36. S.K. Parida, R.N.P. Choudhary, P.G.R. Achary, Ferroelectrics 551, 109 (2019)

    Article  CAS  Google Scholar 

  37. S.K. Parida, Adv. Sci. Lett. 22, 584 (2016)

    Article  Google Scholar 

  38. B. Panda, K.L. Routray, D. Behera, Physica B 583, 411967 (2020)

    Article  CAS  Google Scholar 

  39. A.B.J. Kharrat, N. Moutia, K. Khirouni, W. Boujelben, Mater. Res. Bull. 105, 75 (2018)

    Article  Google Scholar 

  40. E.K. Goharshadi, S. Samiee, P. Nancarrow, J. Colloid Interface Sci. 356, 473 (2011)

    Article  CAS  Google Scholar 

  41. S. Phoka, P. Laokul, E. Swatsitang, V. Promarak, S. Seraphin, S. Maensiri, Mater. Chem. Phys. 115, 423 (2009)

    Article  CAS  Google Scholar 

  42. M. Ghayebloo, M. Tavoosi, M. Rezvani, Infrared Phys. Technol. 83, 62 (2017)

    Article  CAS  Google Scholar 

  43. A. Sacchetti, M. Baldini, F. Crispoldi, P. Postorino, P. Dore, A. Nucara, C. Martin, A. Maignan, Phys. Rev. B 72, 172407 (2005)

    Article  Google Scholar 

  44. C. B. Azzoni, M. C. Mozzati, A. Paleari, V. Massarottib, D. Capsonib, and M. Binib, Z. Naturforsch. A 53, 693 (1998).

  45. C.D. Wagner, D.A. Zatko, R.H. Raymond, Anal. Chem. 52, 1445 (1980)

    Article  CAS  Google Scholar 

  46. J.W. Murray, J.G. Dillard, R. Giovanoli, H. Moers, W. Stumm, Geochim. Cosmochim. Acta 49, 463 (1985)

    Article  CAS  Google Scholar 

  47. Q.-H. Wu, M. Liu, W. Jaegermann, Mater. Lett. 59, 1980 (2005)

    Article  CAS  Google Scholar 

  48. N.K. Mohanty, S.K. Satpathy, B. Behera, P. Nayak, R.N.P. Choudhary, J. Adv. Ceram. 1, 221 (2012)

    Article  CAS  Google Scholar 

  49. R.K. Parida, D.K. Pattanayak, B.N. Parida, J. Mater. Sci. Mater. Electron. 28, 16689 (2017)

    Article  CAS  Google Scholar 

  50. S.K. Dehury, P.G.R. Achary, R.N.P. Choudhary, J. Mater. Sci. Mater. Electron. 29, 3682 (2018)

  51. M. Abbassi, R. Ternane, I. Sobrados, A. Madani, M. Trabelsi-Ayadi, J. Sanz, Ceram. Int. 39, 9215 (2013)

    Article  CAS  Google Scholar 

  52. E. Markiewicz, R. Bujakiewicz-Koronska, A. Budziak, A. Kalvane, D.M. Nalecz, Phase Transit. 87, 1060 (2014)

    Article  CAS  Google Scholar 

  53. J.T.S. Irvine, D.C. Sinclair, A.R. West, Adv. Mater. 2, 132 (1990)

    Article  CAS  Google Scholar 

  54. H. Siebert, Anwendungen Der Schwingungsspektroskopie in Der Anorganischen Chemie (Springer, Berlin, 2013)

    Google Scholar 

  55. S. Selvasekarapandian, M. Vijayakumar, Mater. Chem. Phys. 80, 29 (2003)

    Article  CAS  Google Scholar 

  56. A.K. Jonscher, Nature 267, 673 (1977)

    Article  CAS  Google Scholar 

  57. M.M.S. Sanad, M.M. Rashad, E.A. Abdel-Aal, M.F. El-Shahat, Ceram. Int. 39, 1547 (2013)

    Article  CAS  Google Scholar 

  58. S.K. Dehury, P.G.R. Achary, R.N.P. Choudhary, J. Mater. Sci. Mater. Electron. 29, 3682 (2018)

    Article  CAS  Google Scholar 

  59. S.K. Parida, R.N.P. Choudhary, P.G.R. Achary, Int. J. Microstruct. Mater. Prop. 15, 107 (2020)

    CAS  Google Scholar 

  60. P.G.R. Achary, R.N.P. Choudhary, S.K. Parida, Process. Appl. Ceram. 14, 146 (2020)

    Article  CAS  Google Scholar 

  61. R. Gao, X. Qin, Q. Zhang, Z. Xu, Z. Wang, C. Fu, G. Chen, X. Deng, W. Cai, J. Alloys Compd. 795, 501 (2019)

    Article  CAS  Google Scholar 

  62. R. Gao, Q. Zhang, Z. Xu, Z. Wang, G. Chen, X. Deng, C. Fu, W. Cai, Composites B 166, 204 (2019)

    Article  CAS  Google Scholar 

  63. S. Hajra, M. Sahu, V. Purohit, R.N.P. Choudhary, Heliyon 5, e01654 (2019)

    Article  Google Scholar 

  64. J. Hao, X. Dai, L. Yang, R. Liao, J. Gao, Y. Du, Y. Deng, IEEE Trans. Dielectr. Electr. Insul. 28, 1571 (2021)

  65. J. C. Maxwell, Electricity and Magnetism (Dover New York, 1954).

  66. C.G. Koops, Phys. Rev. 83, 121 (1951)

    Article  CAS  Google Scholar 

  67. R.P. Pawar, V. Puri, Ceram. Int. 40, 10423 (2014)

    Article  CAS  Google Scholar 

  68. M.M.S. Sanad, M.M. Rashad, J. Mater. Sci. Mater. Electron. 27, 9034 (2016)

    Article  CAS  Google Scholar 

  69. M.M.S. Sanad, M.M. Rashad, E.A. Abdel-Aal, M.F. El-Shahat, J. Eur. Ceram. Soc. 32, 4249 (2012)

    Article  CAS  Google Scholar 

  70. M.M.S. Sanad, M.M. Rashad, E.A. Abdel-Aal, M.F. El-Shahat, K. Powers, J. Electron. Mater. 43, 3559 (2014)

    Article  CAS  Google Scholar 

  71. M.M.S. Sanad, M.M. Rashad, E.A. Abdel-Aal, K. Powers, Mater. Chem. Phys. 162, 299 (2015)

    Article  CAS  Google Scholar 

  72. S.K. Parida, SPIN 11, 2150018 (2021)

  73. J. Wang, J.B. Neaton, H. Zheng, V. Nagarajan, S.B. Ogale, B. Liu, D. Viehland, V. Vaithyanathan, D.G. Schlom, U.V. Waghmare et al., Science(80-) 299, 1719 (2003)

    CAS  Google Scholar 

  74. J. Zhao, L. Li, Z. Gui, Sens. Actuators A 95, 46 (2001)

    Article  CAS  Google Scholar 

  75. N.P. Maria Joseph Raj, N.R. Alluri, A. Chandrasekhar, G. Khandelwal, S.J. Kim, Nano Energy 62, 329 (2019)

    Article  CAS  Google Scholar 

  76. C.L. Yuan, X.Y. Liu, J.W. Xu, X.W. Zhang, C.R. Zhou, Bull. Mater. Sci. 35, 425 (2012)

    Article  CAS  Google Scholar 

  77. X.G. Tang, J. Wang, Y.W. Zhang, H.L.W. Chan, J. Appl. Phys. 94, 5163 (2003)

    Article  CAS  Google Scholar 

  78. P. Gupta, P.K. Mahapatra, R.N.P. Choudhary, J. Phys. Chem. Solids 137, 109217 (2020)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

For X-ray photoelectron spectroscopy (XPS) characterization, the authors would like the thank Dr. U. P. Deshpande, Scientist of UGC-DAE-CSR, Indore, and a special thanks to Prof. K.M. Parida, Director, Centre of Nanoscience and Nanotechnology for FTIR study.

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Conceptualization: SKP; Methodology: SB; Formal analysis and investigation: PGRA; Writing—original draft preparation: PGRA, SKP; Writing—review and editing: RNPC, SKP; Funding acquisition: PGRA, SKP, Resources: PGRA, Supervision: PGRA, SKP. All authors read and approved the final manuscript.

Corresponding author

Correspondence to S. K. Parida.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest except Dr. Paweł E. Tomaszewski. The authors have no relevant financial or non-financial interests to disclose.

Ethical approval

There are no research data on the animal product.

Informed consent

All authors are aware of it.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Achary, P.G.R., Behera, S., Choudhary, R.N.P. et al. Structural, dielectric, and electrical properties of cerium-modified strontium manganite ceramics. J Mater Sci: Mater Electron 34, 2200 (2023). https://doi.org/10.1007/s10854-023-11446-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-11446-y

Navigation