Skip to main content
Log in

Study of the thermal decomposition of Cu2ZnSnS4 (CZTS) in different atmospheres: effect of annealing on its structural and optical properties

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The objectives of this study were twofold: firstly, to study the thermal decomposition of Cu2ZnSnS4 (CZTS) in the air or inert atmosphere, and secondly, to study the impact on the structural and optical properties of pure CZTS nanoparticles annealing in an air atmosphere at temperatures of 300 and, 400 °C. CZTS nanoparticles were synthesized at 200 °C through a hydrothermal-microwave technique. CZTS nanoparticles were characterized by TGA, XRD, Raman, SEM, HR-TEM, and UV–Vis techniques to analyze decomposition temperature, crystalline structure, vibrational transitions, morphology, d-spaces, and optical properties, respectively. The as-synthesized particles at 200 °C showed 6 nm size and were annealed at 300, 400, and 500 °C in an air atmosphere. TGA analysis shows CZTS nanoparticles remain stable inside the air atmosphere until 400 °C. However, this material is stable in the inert atmosphere until 600 °C. XRD pattern confirmed the decomposition of CZTS in an air atmosphere at 500 °C to Cu2S, SnO2, Zn(SO4), Cu(SO4), and Cu2(SO4)O. CZTS nanoparticles were stable up to 400 °C, showing a better optical property in the crystal size and structure. The band gap value of CZTS nanoparticles decreases with the heat treatment, which gives a better advantage to light absorption in the visible range for better optoelectronic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

Data will be made available on request.

References

  1. E. Peksu, H. Karaagac, J. Alloys Compd. 862, 158503 (2021)

    Article  CAS  Google Scholar 

  2. R. Touati, M.B. Rabeh, M. Kanzari, Energy Procedia. 44, 44 (2014)

    Article  CAS  Google Scholar 

  3. I.G. Orletskyi, M.M. Solovan, V.V. Brus, F. Pinna, G. Cicero, P.D. Maryanchuk, E.V. Maistruk, M.I. Ilashchuk, T.I. Boichuk, E. Tresso, J. Phys. Chem. Solids. 100, 154 (2017)

    Article  CAS  Google Scholar 

  4. C. Gobbo, V. Di Palma, V. Trifiletti, C. Malerba, M. Valentini, I. Matacena, S. Daliento, S. Binetti, M. Acciarri, G. Tseberlidis, Energies. 16, 4137 (2023)

    Article  CAS  Google Scholar 

  5. S. Ouédraogo, M.B. Kébré, A.T. Ngoupo, D. Oubda, F. Zougmoré, Mater. Sci. Appl. 11, 880 (2020)

    Google Scholar 

  6. D. Mora-Herrera, M. Pal, J. Santos-Cruz, Sol. Energy. 220, 316 (2021)

    Article  CAS  Google Scholar 

  7. S.B. Patel, J.V. Gohel, J. Mater. Sci. Mater. Electron. 29, 5613 (2018)

    Article  CAS  Google Scholar 

  8. A. Bosio, G. Rosa, N. Romeo, Sol. Energy. 175, 31 (2018)

    Article  CAS  Google Scholar 

  9. Z. Duan, X. Liang, Y. Feng, H. Ma, B. Liang, Y. Wang, S. Luo, S. Wang, R.E.I. Schropp, Y. Mai, Z. Li, Adv. Mater. 34, 2202969 (2022)

    Article  CAS  Google Scholar 

  10. A.F. Violas, A.J.N. Oliveira, J.P. Teixeira, T.S. Lopes, J.R.S. Barbosa, P.A. Fernandes, P.M.P. Salomé, Sol. Energy Mater. Sol. Cells. 243, 111792 (2022)

    Article  CAS  Google Scholar 

  11. A.S. Nazligul, M. Wang, K.L. Choy, Sustainability. 12, 5138 (2020)

    Article  CAS  Google Scholar 

  12. X. Song, X. Ji, M. Li, W. Lin, X. Luo, H. Zhang, Int. J. Photoenergy (2014). https://doi.org/10.1155/2014/613173

    Article  Google Scholar 

  13. J. Li, K. Sun, X. Yuan, J. Huang, M.A. Green, X. Hao, Npj Flex. Electron. 7, 1 (2023)

    Article  Google Scholar 

  14. B.-W. Liu, M.-J. Zhang, Z.-Y. Zhao, H.-Y. Zeng, F.-K. Zheng, G.-C. Guo, J.-S. Huang, J. Solid State Chem. 204, 251 (2013)

    Article  CAS  Google Scholar 

  15. K. Sun, F. Liu, X. Hao, K. Sun, F. Liu, X. Hao, in Thin Films Photovolt (IntechOpen, 2021)

  16. M. Guc, F. Oliva, A. Fairbrother, T. Jawhari, X. Alcobe, M. Placidi, A. Pérez-Rodríguez, E. Saucedo, V. Izquierdo-Roca, Scr. Mater. 186, 180 (2020)

    Article  CAS  Google Scholar 

  17. V.R. Minnam Reddy, M.R. Pallavolu, P.R. Guddeti, S. Gedi, B. Pejjai, W.K. Kim, T.R.R. Kotte, C. Park, J. Ind. Eng. Chem. 76, 39 (2019)

    Article  CAS  Google Scholar 

  18. S. Engberg, J. Symonowicz, J. Schou, S. Canulescu, K.M. Jensen, ACS Omega (2020). https://doi.org/10.1038/s41598-020-77592-z

    Article  Google Scholar 

  19. E. Indubala, S. Sarveshvaran, V. Sudha, A.Y. Mamajiwala, S. Harinipriya, Sol. Energy. 173, 215 (2018)

    Article  CAS  Google Scholar 

  20. M. Valdés, M.F. Pascual-Winter, A. Bruchhausen, W. Schreiner, M. Vázquez, Phys. Status Solidi A 215, 1800639 (2018)

    Article  Google Scholar 

  21. F. Sava, O. Diagne, A.-C. Galca, I.-D. Simandan, E. Matei, M. Burdusel, N. Becherescu, V. Becherescu, C. Mihai, A. Velea, Materials. 13, 4624 (2020)

    Article  CAS  Google Scholar 

  22. M.Y. Zaki, F. Sava, I.D. Simandan, A.T. Buruiana, C. Mihai, A. Velea, A.C. Galca, Sci. Rep. 12, 7958 (2022)

    Article  CAS  Google Scholar 

  23. N. Kamoun, H. Bouzouita, B. Rezig, Thin Solid Films. 515, 5949 (2007)

    Article  CAS  Google Scholar 

  24. H. Katagiri, N. Sasaguchi, S. Hando, S. Hoshino, J. Ohashi, T. Yokota, Sol. Energy Mater. Sol. Cells. 49, 407 (1997)

    Article  CAS  Google Scholar 

  25. M. Yu, Intell. Natl. Secur. 16, 37 (2001)

    Article  CAS  Google Scholar 

  26. A. Cazzaniga, A. Crovetto, C. Yan, K. Sun, X. Hao, J. Ramis Estelrich, S. Canulescu, E. Stamate, N. Pryds, O. Hansen, J. Schou, Sol. Energy Mater. Sol. Cells. 166, 91 (2017)

    Article  CAS  Google Scholar 

  27. E. Garcia-Llamas, J.M. Merino, R. Gunder, K. Neldner, D. Greiner, A. Steigert, S. Giraldo, V. Izquierdo-Roca, E. Saucedo, M. León, S. Schorr, R. Caballero, Sol. Energy. 141, 236 (2017)

    Article  CAS  Google Scholar 

  28. J.A. Oke, T.-C. Jen, J. Mater. Res. Technol. 21, 2481 (2022)

    Article  CAS  Google Scholar 

  29. A. Wei, Z. Yan, Y. Zhao, M. Zhuang, J. Liu, Int. J. Hydrog Energy. 40, 797 (2015)

    Article  CAS  Google Scholar 

  30. J.D. Cristóbal-García, F. Paraguay-Delgado, G. Herrera-Pérez, R.Y. Sato-Berrú, N.R. Mathews, J. Mater. Sci. Mater. Electron. 29, 20302 (2018)

    Article  Google Scholar 

  31. A. Krishnan, G. Vishnu, P. Kannan, Int. J. Energy Res. 43, 589 (2019)

    Article  CAS  Google Scholar 

  32. Z. Hou, Y. Li, J. Liu, H. Shen, X. Huo, New. J. Chem. 45, 1743 (2021)

    Article  CAS  Google Scholar 

  33. Y. Wang, X. Fu, T. Wang, F. Li, D. Li, Y. Yang, X. Dong, Sens. Actuators B Chem. 348, 130683 (2021)

    Article  CAS  Google Scholar 

  34. Z.S. Ali, J. Phys. Conf. Ser. 1530, 012132 (2020)

    Article  CAS  Google Scholar 

  35. J.K. Radhakrishnan, M. Kumara, Geetika, Sens. Int. 2, 100059 (2021)

    Article  Google Scholar 

  36. S. Heidari, L. Pan, J. Wu, L. Liu, W. Zhang, R. Li, Y. Chen, J. Chem. Technol. Biotechnol. 98, 958 (2023)

    Article  CAS  Google Scholar 

  37. R. Žalnėravičius, V. Pakštas, G. Grincienė, V. Klimas, A. Paškevičius, K. Timmo, M. Kauk-Kuusik, M. Franckevičius, G. Niaura, M. Talaikis, A. Jagminas, A. Ramanavičius, Colloids Surf. B Biointerfaces. 225, 113275 (2023)

    Article  Google Scholar 

  38. I.B. Vashistha, M.C. Sharma, S.K. Sharma, Adv. Mater. Proc. 3, 13 (2021)

    Article  Google Scholar 

  39. S. Chamekh, N. Khemiri, M. Kanzari, SN Appl. Sci. 2, 1507 (2020)

    Article  CAS  Google Scholar 

  40. L. Chen, C. Park, Korean J. Chem. Eng. 34, 1187 (2017)

    Article  CAS  Google Scholar 

  41. M.Z. Ansari, N. Khare, J. Phys. Appl. Phys. 47, 185101 (2014)

    Article  Google Scholar 

  42. S.A. Vanalakar, S.W. Shin, G.L. Agawane, M.P. Suryawanshi, K.V. Gurav, P.S. Patil, J.H. Kim, Ceram. Int. 40, 15097 (2014)

    Article  CAS  Google Scholar 

  43. D.P. Joshi, K. Sharma, Indian J. Pure Appl. Phys. 50, 661 (2012)

    CAS  Google Scholar 

  44. V. Pakštas, G. Grincienė, A. Selskis, S. Balakauskas, M. Talaikis, L. Bruc, N. Curmei, G. Niaura, M. Franckevičius, Sci. Rep. 12, 16170 (2022)

    Article  Google Scholar 

  45. J. Madarász, G. Pokol, J. Therm. Anal. Calorim. 88, 329 (2007)

    Article  Google Scholar 

  46. J.J. Scragg, T. Ericson, T. Kubart, M. Edoff, C. Platzer-Björkman, Chem. Mater. 23, 4625 (2011)

    Article  CAS  Google Scholar 

  47. O. Awadallah, Z. Cheng, IEEE J. Photovolt. 6, 764 (2016)

    Article  Google Scholar 

  48. P. Prabeesh, I.P. Selvam, S.N. Potty, Thin Solid Films. 606, 94 (2016)

    Article  CAS  Google Scholar 

  49. O. Selyshchev, Y. Havryliuk, M.Y. Valakh, V.O. Yukhymchuk, O. Raievska, O.L. Stroyuk, V. Dzhagan, D.R.T. Zahn, ACS Appl. Nano Mater. 3, 5706 (2020)

    Article  CAS  Google Scholar 

  50. E.M. Mkawi, Y. Al-Hadeethi, O. Al-Hartomy, E. Bekyarova, Results Phys. 19, 103407 (2020)

    Article  Google Scholar 

  51. B. Unveroglu, G. Zangari, Electrochim. Acta. 255, 347 (2017)

    Article  CAS  Google Scholar 

  52. A.-S. Gadallah, M.A. Salim, T. Atwee, A.M. Ghander, Optik. 159, 275 (2018)

    Article  CAS  Google Scholar 

  53. F. Alirezazadeh, E. Alimohammadi, S. Sheibani, F. Rashchi, Mater. Chem. Phys. 292, 126856 (2022)

    Article  CAS  Google Scholar 

  54. E.M. Mkawi, Y. Al-Hadeethi, E. Shalaan, E. Bekyarova, Ceram. Int. 46, 24916 (2020)

    Article  CAS  Google Scholar 

  55. H. Ferhati, F. Djeffal, Opt. Mater. 76, 393 (2018)

    Article  CAS  Google Scholar 

  56. S. Das, I. Alam, J. Raiguru, B.V.R.S. Subramanyam, P. Mahanandia, Phys. E Low-Dimens Syst. Nanostructures. 105, 19 (2019)

    Article  CAS  Google Scholar 

  57. N. Khothong, T. Anantamongkolchai, P. Vas-umnuay, Ceram. Intl. 45, 6102 (2019)

    Article  CAS  Google Scholar 

  58. D.L.S. Pinzón, J.A.G. Cuaspud, E. Vera, López, M. Schmal, Mater. Res. 24, e20200290 (2021)

    Article  Google Scholar 

Download references

Acknowledgements

Thanks to C. Leyva, Luis de la Torre, Pedro Piza, and Daniel Lardizabal for their technical assistance at CIMAV. Thanks to Italian Synchrotron Elettra for the provision of beam time, as well as the staff of the MCX beamline for their help during measurements as part of proposal No. 20180277.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation was performed by JDCG and FPD, data collection and analysis were performed by all the authors. FPD and JCPE wrote the first draft of the manuscript and all authors commented on previous versions. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Juan C. Pantoja-Espinoza.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationship that could have appeared to influence the work reported in this paper.

Ethical approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cristóbal-García, J.D., Paraguay-Delgado, F., Herrera-Pérez, G.M. et al. Study of the thermal decomposition of Cu2ZnSnS4 (CZTS) in different atmospheres: effect of annealing on its structural and optical properties. J Mater Sci: Mater Electron 34, 2013 (2023). https://doi.org/10.1007/s10854-023-11427-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-11427-1

Navigation