Skip to main content
Log in

Fabrication and investigation of carbon nanotubes-p-Bi2Te3-textile composite based temperature gradient sensors

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The multiwalled carbon nanotubes-p-Bi2Te3-cotton textile composite based flexible thermoelectric cells have been designed, fabricated, and characterized for sensing temperature gradient. These cells were fabricated by rubbing-in technology. The textile sheet played the role of substrate as well. The Seebeck coefficient, thermoelectric short-circuit current and resistance dependence on temperature were investigated. It was observed that on increasing temperature in the range of 301 to 351 K the Seebeck coefficient increased by 1.2 times and the short-circuit current increased by 7.0 times, while the resistance of the cells decreased by 1.25 times. Thermoelectric cells can be used for the measurement of the gradient of temperature and as a low power converter of heat energy into electric. Main advantages of the fabricated thermoelectric cells are the following: natural textile substrate, flexibility, low-cost thermoelectric materials, and technology of fabrication, relatively and sufficiently high value of the Seebeck coefficient. The MWCNTs-p-Bi2Te3-textile composite based cells can be used as resistive temperature sensor due to their quasi-linear resistance-temperature behavior. These cells may also work as multifunctional devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

All the related data has been presented in the manuscript.

References

  1. S.B. Riffat, X. Ma, Thermoelectrics: a review of present and potential applications. Appl. Therm. Eng. 23, 913–935 (2003)

    Article  Google Scholar 

  2. D. Kraemer, B. Poudel, H.-P. Feng, J.C. Caylor, B. Yu, X. Yan, Y. Ma, X. Wang, D. Wang, A. Muto, K. McEnaney, M. Chiesa, Z. Ren, G. Chen, High-performance flat-panel solar thermoelectric generators with high thermal concentration. Nat. Mater. 10, 532–538 (2011)

    Article  CAS  Google Scholar 

  3. L. Tzounis, Synthesis and processing of thermoelectric nanomaterials, nanocomposites, and devices, in Nanomaterials Synthesis. ed. by Y. Beeran Pottathara, S. Thomas, N. Kalarikkal, Y. Grohens, V. Kokol (Elsevier, Amsterdam, 2019), pp.295–336

    Chapter  Google Scholar 

  4. B. Russ, A. Glaudell, J.J. Urban, M.L. Chabinyc, R.A. Segalman, Organic thermoelectric materials for energy harvesting and temperature control. Nat. Rev. Mater. 1, 16050 (2016)

    Article  CAS  Google Scholar 

  5. X.-L. Shi, J. Zou, Z.-G. Chen, Advanced thermoelectric design: from materials and structures to devices. Chem. Rev. 120, 7399–7515 (2020)

    Article  CAS  Google Scholar 

  6. Y. Li, G. Wang, M. Akbari-Saatlu, M. Procek, H.H. Radamson, Si and SiGe nanowire for micro-thermoelectric generator: a review of the current state of the art. Front. Mater. (2021). https://doi.org/10.3389/fmats.2021.611078

    Article  Google Scholar 

  7. M. Noroozi, G. Jayakumar, K. Zahmatkesh, J. Lu, L. Hultman, M. Mensi, S. Marcinkevicius, B. Hamawandi, M.Y. Tafti, A.B. Ergül, Z. Ikonic, M.S. Toprak, H.H. Radamson, Unprecedented thermoelectric power factor in SiGe nanowires field-effect transistors. ECS J. Solid State Sci. Technol. 6, Q114 (2017)

    Article  CAS  Google Scholar 

  8. H. Wang, C. Yu, Organic thermoelectrics: materials preparation, performance optimization, and device integration. Joule 3, 53–80 (2019)

    Article  CAS  Google Scholar 

  9. D. Wang, L. Liu, X. Gao, C.-. Di, D. Zhu, Recent advances in molecular design of organic thermoelectric materials. CCS Chem. 3, 2212–2225 (2021)

    Article  CAS  Google Scholar 

  10. F. Zhang, C.-. Di, Exploring thermoelectric materials from high mobility organic semiconductors. Chem. Mater. 32, 2688–2702 (2020)

    Article  CAS  Google Scholar 

  11. M. Sumino, K. Harada, M. Ikeda, S. Tanaka, K. Miyazaki, C. Adachi, Thermoelectric properties of n-type C60 thin films and their application in organic thermovoltaic devices. Appl. Phys. Lett. 99, 093308 (2011)

    Article  Google Scholar 

  12. D. Dragoman, M. Dragoman, Giant thermoelectric effect in graphene. Appl. Phys. Lett. 91, 203116 (2007)

    Article  Google Scholar 

  13. X. Ni, G. Liang, J.-S. Wang, B. Li, Disorder enhances thermoelectric figure of merit in armchair graphane nanoribbons. Appl. Phys. Lett. 95, 192114 (2009)

    Article  Google Scholar 

  14. H. Sevinçli, G. Cuniberti, Enhanced thermoelectric figure of merit in edge-disordered zigzag graphene nanoribbons. Phys. Rev. B 81, 113401 (2010)

    Article  Google Scholar 

  15. N. Xiao, X. Dong, L. Song, D. Liu, Y. Tay, S. Wu, L.J. Li, Y. Zhao, T. Yu, H. Zhang, W. Huang, H.H. Hng, P.M. Ajayan, Q. Yan, Enhanced thermopower of graphene films with oxygen plasma treatment. ACS Nano. 5, 2749–2755 (2011)

    Article  CAS  Google Scholar 

  16. P. Dollfus, V. Hung Nguyen, J. Saint-Martin, Thermoelectric effects in graphene nanostructures. J. Phys.: Condens. Matter. 27, 133204 (2015)

    Google Scholar 

  17. P.H. Chang, M.S. Bahramy, N. Nagaosa, B.K. Nikolić, Giant thermoelectric effect in graphene-based topological insulators with heavy adatoms and nanopores. Nano Lett. 14, 3779–3784 (2014)

    Article  CAS  Google Scholar 

  18. M. Zeng, W. Huang, G. Liang, Spin-dependent thermoelectric effects in graphene-based spin valves. Nanoscale. 5(1), 200–208 (2013)

    Article  CAS  Google Scholar 

  19. F. Shafiq, R.W. Qadir, K.W. Qadir, Q. Zafar, Development of highly sensitive relative humidity sensor based on nanoporous PCPDTBT thin film. Synth. Met. 298, 117429 (2023)

    Article  CAS  Google Scholar 

  20. Q. Zafar, Z. Ahmad, Dual donor bulk-heterojunction to realize a quick and more sensitive organic visible photodector. J. Mater. Sci.: Mater. Electron. 29, 11144–11150 (2018)

    CAS  Google Scholar 

  21. Q. Zafar, S.M. Abdullah, M.I. Azmer, M.A. Najeeb, K.W. Qadir, K. Sulaiman, Influence of relative humidity on the electrical response of PEDOT:PSS based organic field-effect transistor. Sens. Actuators B 255, 2652–2656 (2018)

    Article  CAS  Google Scholar 

  22. P.A. Finn, C. Asker, K. Wan, E. Bilotti, O. Fenwick, C.B. Nielsen, Thermoelectric materials: current status and future challenges. Front. Electron. Mater. (2021). https://doi.org/10.3389/femat.2021.677845

    Article  Google Scholar 

  23. D. Kim, Y. Kim, K. Choi, J.C. Grunlan, C. Yu, Improved thermoelectric behavior of nanotube-filled polymer composites with poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate). ACS Nano. 4, 513–523 (2010)

    Article  CAS  Google Scholar 

  24. C. Meng, C. Liu, S. Fan, A promising approach to enhanced thermoelectric properties using carbon nanotube networks. Adv. Mater. 22, 535–539 (2010)

    Article  CAS  Google Scholar 

  25. C. Cho, J. Son, Organic thermoelectric multilayers with high stretchiness. Nanomaterials (Basel, Switzerland) (2019). https://doi.org/10.3390/nano10010041

    Article  Google Scholar 

  26. B. Kumanek, G. Stando, P.S. Wróbel, M. Krzywiecki, D. Janas, Thermoelectric properties of composite films from multi-walled carbon nanotubes and ethyl cellulose doped with heteroatoms. Synth. Met. 257, 116190 (2019)

    Article  CAS  Google Scholar 

  27. N.T. Hung, A.R.T. Nugraha, R. Saito, Thermoelectric properties of carbon nanotubes. Energies (2019). https://doi.org/10.3390/en12234561

    Article  Google Scholar 

  28. K.S. Karimov, Ð. Abid, M. Saleem, K.M. Akhmedov, M.M. Bashir, U. Shafique, M.M. Ali, Temperature gradient sensor based on CNT composite. Phys. B: Condens. Matter. 446, 39–42 (2014)

    Article  CAS  Google Scholar 

  29. M.T.S. Chani, K.S. Karimov, J. Nabi, M. Hashim, I. Kiran, A.M. Asiri, Design, fabrication and investigation of semitransparent thermoelectric cells based on graphene. Int. J. Electrochem. Sci. 13, 11777–11786 (2018)

    Article  CAS  Google Scholar 

  30. M.T.S. Chani, K.S. Karimov, H.M. Marwani, H. Muhammad, M.M. Zeeshan, A.M. Asiri, Impedimetric multifunctional sensor based on rubber-CNTs-orange dye nanocomposite fabricated by rubbing-in technology. Int. J. Electrochem. Sci. (2021). https://doi.org/10.20964/2021.07.17

    Article  Google Scholar 

  31. M.T.S. Chani, K.S. Karimov, H.M. Marwani, M.M. Rahman, A.M. Asiri, Electric properties of flexible rubber-based CNT/CNT-OD/Al cells fabricated by rubbing-in technology. Appl. Phys. A 127, 1–8 (2021)

    Article  Google Scholar 

  32. M. Dasari, P.R. Rajasekaran, R. Iyer, P. Kohli, Calligraphic solar cells: acknowledging paper and pencil. J. Mater. Res. 31, 2578–2589 (2016)

    Article  CAS  Google Scholar 

  33. C.J. Garvey, I.H. Parker, G.P. Simon, On the interpretation of X-ray diffraction powder patterns in terms of the nanostructure of cellulose I fibres. Macromol. Chem. Phys. 206, 1568–1575 (2005)

    Article  CAS  Google Scholar 

  34. B. Xu, K.M. Poduska, Linking crystal structure with temperature-sensitive vibrational modes in calcium carbonate minerals. Phys. Chem. Chem. Phys. 16, 17634–17639 (2014)

    Article  CAS  Google Scholar 

  35. Y. Lu, X. Liu, W. Wang, J. Cheng, H. Yan, C. Tang, J.-K. Kim, Y. Luo, Hierarchical, porous CuS microspheres integrated with carbon nanotubes for high-performance supercapacitors. Sci. Rep. 5, 16584 (2015)

    Article  CAS  Google Scholar 

  36. B.A. MacLeod, N.J. Stanton, I.E. Gould, D. Wesenberg, R. Ihly, Z.R. Owczarczyk, K.E. Hurst, C.S. Fewox, C.N. Folmar, K. Holman Hughes, B.L. Zink, J.L. Blackburn, A.J. Ferguson, Large n- and p-type thermoelectric power factors from doped semiconducting single-walled carbon nanotube thin films. Energy Environ. Sci. 10, 2168–2179 (2017)

    Article  CAS  Google Scholar 

  37. L. Brownlie, J. Shapter, Advances in carbon nanotube n-type doping: methods, analysis and applications. Carbon. 126, 257–270 (2018)

    Article  CAS  Google Scholar 

  38. V. Derycke, R. Martel, J. Appenzeller, P. Avouris, Controlling doping and carrier injection in carbon nanotube transistors. Appl. Phys. Lett. 80, 2773–2775 (2002)

    Article  CAS  Google Scholar 

  39. B. Saruhan, R. Lontio Fomekong, S. Nahirniak, Review: influences of semiconductor metal oxide properties on gas sensing characteristics. Front. Sens. (2021). https://doi.org/10.3389/fsens.2021.657931

    Article  Google Scholar 

  40. A. Wisitsoraat, A. Tuantranont, E. Comini, G. Sberveglieri, W. Wlodarski, Characterization of n-type and p-type semiconductor gas sensors based on NiOx doped TiO2 thin films. Thin Solid Films. 517, 2775–2780 (2009)

    Article  CAS  Google Scholar 

  41. H.S. Kousar, D. Srivastava, A.J. Karttunen, M. Karppinen, G.C. Tewari, p-type to n-type conductivity transition in thermoelectric CoSbS. APL Mater. (2022). https://doi.org/10.1063/5.0107277

    Article  Google Scholar 

  42. D. Hayashi, Y. Nakai, H. Kyakuno, Y. Miyata, K. Yanagi, Y. Maniwa, Temperature dependence of the Seebeck coefficient for mixed semiconducting and metallic single-wall carbon nanotube bundles. Appl. Phys. Express. 13, 015001 (2020)

    Article  CAS  Google Scholar 

  43. I. Kunadian, R. Andrews, M. Pinar Mengüç, D. Qian, Thermoelectric power generation using doped MWCNTs. Carbon. 47, 589–601 (2009)

    Article  CAS  Google Scholar 

  44. F. Erden, H. Li, X. Wang, F. Wang, C. He, High-performance thermoelectric materials based on ternary TiO2/CNT/PANI composites. Phys. Chem. Chem. Phys. 20, 9411–9418 (2018)

    Article  CAS  Google Scholar 

  45. B. Krause, V. Bezugly, V. Khavrus, L. Ye, G. Cuniberti, P. Pötschke, Boron doping of SWCNTs as a way to enhance the thermoelectric properties of melt-mixed polypropylene/SWCNT composites. Energies (2020). https://doi.org/10.3390/en13020394

    Article  Google Scholar 

  46. W. Liu, H.S. Kim, S. Chen, Q. Jie, B. Lv, M. Yao, Z. Ren, C.P. Opeil, S. Wilson, C.-W. Chu, Z. Ren, n-type thermoelectric material Mg2Sn0.75Ge0.25 for high power generation. Proc. National Academy Sci. 112, 3269–3274 (2015)

    Article  CAS  Google Scholar 

  47. W. Liu, H.S. Kim, Q. Jie, Z. Ren, Importance of high power factor in thermoelectric materials for power generation application: a perspective. Scripta Mater. 111, 3–9 (2016)

    Article  CAS  Google Scholar 

  48. K.F. Hsu, S. Loo, F. Guo, W. Chen, J.S. Dyck, C. Uher, T. Hogan, E. Polychroniadis, M.G. Kanatzidis, Cubic AgPb m SbTe2 + m: bulk thermoelectric materials with high figure of merit. Science. 303, 818–821 (2004)

    Article  CAS  Google Scholar 

  49. K. Biswas, J. He, I.D. Blum, C.-I. Wu, T.P. Hogan, D.N. Seidman, V.P. Dravid, M.G. Kanatzidis, High-performance bulk thermoelectrics with all-scale hierarchical architectures. Nature. 489, 414–418 (2012)

    Article  CAS  Google Scholar 

  50. W. Zhao, S. Fan, N. Xiao, D. Liu, Y.Y. Tay, C. Yu, D. Sim, H.H. Hng, Q. Zhang, F. Boey, Flexible carbon nanotube papers with improved thermoelectric properties. Energy Environ. Sci. 5, 5364–5369 (2012)

    Article  CAS  Google Scholar 

  51. R. Amatya, R. Ram, Trend for thermoelectric materials and their earth abundance. J. Electron. Mater. 41, 1011–1019 (2012)

    Article  CAS  Google Scholar 

  52. G.J. Snyder, E.S. Toberer, Complex thermoelectric materials. Nat. Mater. 7, 105–114 (2008)

    Article  CAS  Google Scholar 

  53. N. Dubey, M. Leclerc, Conducting polymers: efficient thermoelectric materials. J. Polym. Sci., Part B: Polym. Phys. 49, 467–475 (2011)

    Article  CAS  Google Scholar 

  54. C.-J. Yao, H.-L. Zhang, Q. Zhang, Recent progress in thermoelectric materials based on conjugated polymers. Polymers. 11, 107 (2019)

    Article  Google Scholar 

  55. K.T. Kim, S.Y. Choi, E.H. Shin, K.S. Moon, H.Y. Koo, G.-G. Lee, G.H. Ha, The influence of CNTs on the thermoelectric properties of a CNT/Bi2Te3 composite. Carbon. 52, 541–549 (2013)

    Article  CAS  Google Scholar 

  56. W. Huang, E. Tokunaga, Y. Nakashima, T. Fujigaya, Thermoelectric properties of sorted semiconducting single-walled carbon nanotube sheets. Sci. Technol. Adv. Mater. 20, 97–104 (2019)

    Article  CAS  Google Scholar 

  57. N. Salah, N.A. Alhebshi, Y.N. Salah, H.N. Alshareef, K. Koumoto, Thermoelectric properties of oil fly ash-derived carbon nanotubes coated with polypyrrole. J. Appl. Phys. (2020). https://doi.org/10.1063/5.0031438

    Article  Google Scholar 

  58. X. Yang, J. Cui, K. Xue, Y. Fu, H. Li, H. Yang, Thermal conductivity and thermoelectric properties in 3D macroscopic pure carbon nanotube materials. Nanotechnol. Rev. 10, 178–186 (2021)

    Article  CAS  Google Scholar 

  59. P. Slobodian, P. Riha, R. Olejnik, M. Kovar, P. Svoboda, Thermoelectric properties of carbon nanotube and nanofiber based ethylene-octene copolymer composites for thermoelectric devices. J. Nanomater. 2013, 792875 (2013)

    Article  Google Scholar 

  60. B. Kumanek, G. Stando, P. Stando, K. Matuszek, K.Z. Milowska, M. Krzywiecki, M. Gryglas-Borysiewicz, Z. Ogorzałek, M.C. Payne, D. MacFarlane, D. Janas, Enhancing thermoelectric properties of single-walled carbon nanotubes using halide compounds at room temperature and above. Sci. Rep. 11, 8649 (2021)

    Article  CAS  Google Scholar 

  61. D. Qian, Z. Ye, L. Pan, Z. Zuo, D. Yang, Y. Yan, The mechanical and thermoelectric properties of Bi2Te3-based alloy prepared by constrained hot compression technique. Metals 11, 1060 (2021)

    Article  CAS  Google Scholar 

  62. C. Gayner, Y. Natanzon, Y. Kauffmann, Y. Amouyal, Topologically-enhanced thermoelectric properties in Bi2Te3-based compounds: effects of grain size and misorientation. ACS Appl. Mater. Interfaces. 14, 49730–49745 (2022)

    Article  CAS  Google Scholar 

  63. T. Croft, R. Davison, M. Hargreaves, Engineering Mathematics: a Modern Foundation for Electrical, Elctronic, and Control Engineers (Addison–Wesley, Boston, 1996)

    Google Scholar 

Download references

Acknowledgements

This project was funded by the Deanship of Scientific Research (DSR), King Abdulaziz University, Jeddah, Saudi Arabia, under grant no. (G-493-130-1442). The authors, therefore, acknowledge with thanks DSR for technical and financial support.

Funding

This Project was funded by the Deanship of Scientific Research (DSR) at King Abdulaziz University, Jeddah, under Grant No. G: 493-130-1442.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization was done by MTSC and KSK; methodology was done by KSK and MTSC; software was done by MTSC, RA and UA; validation was done by MTSC, KSK and UA; formal analysis was done by KSK, MTSC, RA and AMA; investigation was done by MTSC, KSK and UA; resources were done by KSK and MTSC; data curation was done by MTSC RA and UA; writing—original draft preparation were done by MTSC and KSK; writing—review and editing were done by RA, UA and AMA; visualization was done by MTSC, UA and KSK; supervision was done by MTSC and AMA; project administration was done by MTSC and KSK; funding acquisition was done by MTSC. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Muhammad Tariq Saeed Chani.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chani, M.T.S., Karimov, K.S., Asghar, U. et al. Fabrication and investigation of carbon nanotubes-p-Bi2Te3-textile composite based temperature gradient sensors. J Mater Sci: Mater Electron 34, 1976 (2023). https://doi.org/10.1007/s10854-023-11411-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-11411-9

Navigation