Skip to main content
Log in

FexCo1−xWO4 films on titanium: plasma electrolytic synthesis, optical, electrochemical and photocatalytic properties

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

FexCo1−xWO4 films on the titanium were formed by one-step plasma electrolytic oxidation in tungstate electrolytes containing Fe(II)-EDTA and/or Co(II)-EDTA anions. The resulting composites were investigated by scanning electron microscopy (SEM), X-ray diffraction (XRD), energy-dispersive X-ray spectroscopy (EDX), and X-ray photoelectron spectroscopy (XPS), diffuse reflection, and electrochemical impedance spectroscopy (EIS). All formed coatings contain TiO2 in the anatase modification and orthorhombic WO3. The oxide layers obtained in a tungstate electrolyte with the addition of only Co(II)-EDTA ions also include CoWO4. Based on Mott–Schottky plots all samples show a positive slope, indicating the behavior of an n-type semiconductor. For the composites obtained, the values of the band gap determined by the Tauc method for direct allowed transitions are 2.5–2.9 eV. The resulting composites exhibit photocatalytic activity in the degradation of methyl orange (10 mg/L, pH 6.8, С(Н2О2) = 10 mmol/L) under UV and visible light irradiation. The highest MO degradation reaches 80% in the presence of Ti/W/Co composite under UV light. According to the Nyquist plots, the most active samples have the lowest resistance to charge transfer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

All data used in this work have been properly cited within the article.

References

  1. M. Cheng, G. Zeng, D. Huang, C. Lai, P. Xu, C. Zhang, Y. Liu, Chem. Eng. J. 284, 582–598 (2016). https://doi.org/10.1016/j.cej.2015.09.001

    Article  CAS  Google Scholar 

  2. J. Zhang, P. Zhou, J. Liu, J. Yu, Phys. Chem. Chem. Phys. 16, 20382–20386 (2014). https://doi.org/10.1039/c4cp02201g

    Article  CAS  Google Scholar 

  3. T. Zhu, S.P. Gao, J. Phys. Chem. C 118, 11385–11396 (2014). https://doi.org/10.1021/jp412462m

    Article  CAS  Google Scholar 

  4. M. Pelaez, N.T. Nolan, S.C. Pillai, M.K. Seery, P. Falaras, A.G. Kontos, P.S.M. Dunlop, J.W.J. Hamilton, J.A. Byrne, K. O’Shea, M.H. Entezari, D.D. Dionysiou, Appl. Catal. B Environ. 125, 331–349 (2012). https://doi.org/10.1016/j.apcatb.2012.05.036

    Article  CAS  Google Scholar 

  5. X. Chen, S.S. Mao, Chem. Rev. 107, 2891–2959 (2007). https://doi.org/10.1021/cr0500535/asset/cr0500535

    Article  CAS  Google Scholar 

  6. R. Del Angel, J.C. Durán-Álvarez, R. Zanella, Titanium Dioxide—Material for a SustainableEnvironment (IntechOpen, London, 2018), pp.305–329. https://doi.org/10.5772/intechopen.76501

    Book  Google Scholar 

  7. Y. Liu, H. Tang, H. Lv, P. Zhang, Z. Ding, S. Li, J. Guang, Powder Technol. 283, 246–253 (2015). https://doi.org/10.1016/j.powtec.2015.05.032

    Article  CAS  Google Scholar 

  8. X. Zou, Y. Dong, X. Zhang, Y. Cui, Appl. Surf. Sci. 366, 173–180 (2016). https://doi.org/10.1016/j.apsusc.2016.01.034

    Article  CAS  Google Scholar 

  9. Y. Wang, J. Tao, X. Wang, Z. Wang, M. Zhang, G. He, Z. Sun, Ceram. Int. 43, 4866–4872 (2017). https://doi.org/10.1016/j.ceramint.2016.12.130

    Article  CAS  Google Scholar 

  10. L. Wei, C. Shifu, Z. Sujuan, Z. Wei, Z. Huaye, Y. Xiaoling, J. Nanoparticle Res. 12, 1355–1366 (2010). https://doi.org/10.1007/S11051-009-9672-4

    Article  Google Scholar 

  11. L. Liu, W. Yang, W. Sun, Q. Li, J.K. Shang, ACS Appl. Mater. Interfaces. 7, 1465–1476 (2015). https://doi.org/10.1021/am505861c

    Article  CAS  Google Scholar 

  12. J. Liu, S. Yang, W. Wu, Q. Tian, S. Cui, Z. Dai, F. Ren, X. Xiao, C. Jiang, ACS Sustain. Chem. Eng. 3, 2975–2984 (2015). https://doi.org/10.1021/acssuschemeng.5b00956

    Article  CAS  Google Scholar 

  13. S. Feizpoor, A. Habibi-Yangjeh, J. Colloid Interface Sci. 524, 325–336 (2018). https://doi.org/10.1016/j.jcis.2018.03.069

    Article  CAS  Google Scholar 

  14. S. Bera, S.B. Rawal, H.J. Kim, W.I. Lee, ACS Appl. Mater. Interfaces. 6, 9654–9663 (2014). https://doi.org/10.1021/am502079x

    Article  CAS  Google Scholar 

  15. M.I. Ahmed, A. Adam, A. Khan, A.U. Rehman, M. Qamaruddin, M.N. Siddiqui, M. Qamar, Mater. Lett. 183, 281–284 (2016). https://doi.org/10.1016/j.matlet.2016.07.137

    Article  CAS  Google Scholar 

  16. Y.X. Zhou, H. Bin Yao, Q. Zhang, J.Y. Gong, S.J. Liu, S.H. Yu, Inorg. Chem. 48, 1082–1090 (2009). https://doi.org/10.1021/ic801806r

    Article  CAS  Google Scholar 

  17. U.M. García-Pérez, A. Martínez-De La, J. Cruz, Peral, Electrochim. Acta. 81, 227–232 (2012). https://doi.org/10.1016/j.electacta.2012.07.045

    Article  CAS  Google Scholar 

  18. X.A. López, A.F. Fuentes, M.M. Zaragoza, J.A. Díaz Guillén, J.S. Gutiérrez, A.L. Ortiz, V. Collins-Martínez, Int. J. Hydrogen Energy. 41, 23312–23317 (2016). https://doi.org/10.1016/j.ijhydene.2016.10.117

    Article  CAS  Google Scholar 

  19. T. Montini, V. Gombac, A. Hameed, L. Felisari, G. Adami, P. Fornasiero, Chem. Phys. Lett. 498, 113–119 (2010). https://doi.org/10.1016/j.cplett.2010.08.026

    Article  CAS  Google Scholar 

  20. X. Xing, Y. Gui, G. Zhang, C. Song, Electrochim. Acta. 157, 15–22 (2015). https://doi.org/10.1016/j.electacta.2015.01.055

    Article  CAS  Google Scholar 

  21. J. Ke, M. Adnan Younis, Y. Kong, H. Zhou, J. Liu, L. Lei, Y. Hou, Nano–Micro Lett. 10, 1–27 (2018). https://doi.org/10.1007/S40820-018-0222-4

    Article  Google Scholar 

  22. S. Han, K. Xiao, L. Liu, H. Huang, Mater. Res. Bull. 74, 436–440 (2016). https://doi.org/10.1016/j.materresbull.2015.10.026

    Article  CAS  Google Scholar 

  23. L. Li, Y. Li, Y. Li, H. Ye, A. Lu, H. Ding, C. Wang, Q. Zhou, J. Shi, X. Ji, Chem. Geol. 575, 120253 (2021). https://doi.org/10.1016/j.chemgeo.2021.120253

    Article  CAS  Google Scholar 

  24. M. Nakayama, A. Takeda, H. Maruyama, V. Kumbhar, O. Crosnier, Electrochem. Commun. 120, 106834 (2020). https://doi.org/10.1016/j.elecom.2020.106834

    Article  CAS  Google Scholar 

  25. W. Shao, Y. Xia, X. Luo, L. Bai, J. Zhang, G. Sun, C. Xie, X. Zhang, W. Yan, Y. Xie, Nano Energy. 50, 717–722 (2018). https://doi.org/10.1016/j.nanoen.2018.06.031

    Article  CAS  Google Scholar 

  26. A.L. Yerokhin, X. Nie, A. Leyland, A. Matthews, S.J. Dowey, Surf Coat. Technol. 122, 73–93 (1999). https://doi.org/10.1016/S0257-8972(99)00441-7

    Article  CAS  Google Scholar 

  27. M. Kaseem, S. Fatimah, N. Nashrah, Y.G. Ko, Prog Mater. Sci. 117, 100735 (2021). https://doi.org/10.1016/j.pmatsci.2020.100735

    Article  CAS  Google Scholar 

  28. S. Sikdar, P.V. Menezes, R. Maccione, T. Jacob, P.L. Menezes, Nanomaterials. 11, 1375 (2021). https://doi.org/10.3390/nano11061375

    Article  CAS  Google Scholar 

  29. M. Karbasi, E. Nikoomanzari, R. Hosseini, H. Bahramian, R. Chaharmahali, S. Giannakis, M. Kaseem, A. Fattah-alhosseini, J. Environ. Chem. Eng. 11, 110027 (2023). https://doi.org/10.1016/j.jece.2023.110027

    Article  CAS  Google Scholar 

  30. S. Stojadinović, N. Radić, R. Vasilić, N. Tadić, A. Tsanev, Solid State Sci. 129, 106896 (2022). https://doi.org/10.1016/j.solidstatesciences.2022.106896

    Article  CAS  Google Scholar 

  31. T. Zehra, B. Dikici, A. Dafali, M. Kaseem, Prog Org. Coatings. 182, 107677 (2023). https://doi.org/10.1016/j.porgcoat.2023.107677

    Article  CAS  Google Scholar 

  32. M. Aliofkhazraei, D.D. Macdonald, E. Matykina, E.V. Parfenov, V.S. Egorkin, J.A. Curran, S.C. Troughton, S.L. Sinebryukhov, S.V. Gnedenkov, T. Lampke, F. Simchen, H.F. Nabavi, Appl. Surf. Sci. Adv. 5, 100121 (2021). https://doi.org/10.1016/j.apsadv.2021.100121

    Article  Google Scholar 

  33. H. Kubendiran, D. Hui, M. Pulimi, N. Chandrasekaran, P.S. Murthy, A. Mukherjee, Environ. Nanatechnol. Monit. Manag. 16, 100561 (2021). https://doi.org/10.1016/j.enmm.2021.100561

    Article  CAS  Google Scholar 

  34. K.-T. Chung, J. Environ. Sci. Heal Part. C 34, 233–261 (2016). https://doi.org/10.1080/10590501.2016.1236602

    Article  CAS  Google Scholar 

  35. H. Mandal, S. Shyamal, P. Hajra, B. Samanta, P. Fageria, S. Pande, C. Bhattacharya, Electrochim. Acta. 141, 294–301 (2014). https://doi.org/10.1016/j.electacta.2014.06.013

    Article  CAS  Google Scholar 

  36. A.A. Amsheeva, J. Anal. Chem. USSR. 36, 814 (1978). WoS A1978GF08000003

    Google Scholar 

  37. Y.Y. Lurie, Handbook of Analytical Chemistry (MIR Publishers, Moscow, 1979)

    Google Scholar 

  38. P.Y. Gorobtsov, T.L. Simonenko, N.P. Simonenko, E.P. Simonenko, V.G. Sevastyanov, N.T. Kuznetsov, Russ J. Inorg. Chem. 66, 1811–1816 (2021). https://doi.org/10.1134/s0036023621120032

    Article  CAS  Google Scholar 

  39. G.M.H. Van de Velde, J. Inorg, Nucl. Chem. 39, 1357–1362 (1977). https://doi.org/10.1016/0022-1902(77)80298-4

    Article  CAS  Google Scholar 

  40. M.V. Mohosoev, N.A. Shvetsova, The State of Ions of Molybdenum and Tungsten in Aqueous Solutions (Buryat Publishing House, Ulan-Ude, 1977)

    Google Scholar 

  41. L. Casanova, F. Ceriani, M. Pedeferri, M. Ormellese, Coatings. 12, 143 (2022). https://doi.org/10.3390/coatings12020143

    Article  CAS  Google Scholar 

  42. M.S. Vasilyeva, I.V. Lukiyanchuk, T.P. Yarovaya, A.A. Rybalka, Russ J. Inorg. Chem. 67, 1451–1459 (2022). https://doi.org/10.1134/S0036023622090170

    Article  CAS  Google Scholar 

  43. M.V. Adigamova, I.V. Lukiyanchuk, V.P. Morozova, I.A. Tkachenko, K.N. Kilin, Surf Coat. Technol. 446, 128790 (2022). https://doi.org/10.1016/j.surfcoat.2022.128790

    Article  CAS  Google Scholar 

  44. R.J. Motekaitis, X.B. III Cox, P. Taylor, A.E. Martell, B. Miles, T.J. Jr Tvedt, Can. J. Chem. 60, 1207–1213 (1982). https://doi.org/10.1139/V82-179

    Article  CAS  Google Scholar 

  45. M. Chirita, R. Banica, A. Ieta, I. Grozescu, Part. Sci. Technol. 28, 217–225 (2010). https://doi.org/10.1080/02726351.2010.481576

    Article  CAS  Google Scholar 

  46. V.S. Rudnev, A.A. Vaganov-Vil’kins, A.Y. Ustinov, P.M. Nedozorov, Prot. Met. Phys. Chem. Surfaces. 47, 330–338 (2011). https://doi.org/10.1134/S2070205111030130

    Article  CAS  Google Scholar 

  47. I.V. Lukiyanchuk, V.S. Rudnev, V.G. Kuryavyi, D.L. Boguta, S.B. Bulanova, P.S. Gordienko, Thin Solid Films. 446, 54–60 (2004). https://doi.org/10.1016/S0040-6090(03)01318-X

    Article  CAS  Google Scholar 

  48. Y. Zou, S. Xi, T. Bo, X. Zhou, J. Ma, X. Yang, C. Diao, Y. Deng, J. Mater. Chem. A 7, 21874–21883 (2019). https://doi.org/10.1039/c9ta08633a

    Article  CAS  Google Scholar 

  49. M. Jeyakanthan, U. Subramanian, R.B. Tangsali, R. Jose, K.V. Saravanan, J. Mater. Sci. Mater. Electron. 30, 14657–14668 (2019). https://doi.org/10.1007/S10854-019-01837-5

    Article  CAS  Google Scholar 

  50. F.M. Hossain, L. Sheppard, J. Nowotny, G.E. Murch, J. Phys. Chem. Solids. 69, 1820–1828 (2008). https://doi.org/10.1016/J.JPCS.2008.01.017

    Article  CAS  Google Scholar 

  51. M. Ismail, L. Bousselmi, O. Zahraa, J. Photochem, Photobiol. A Chem. 222, 314–322 (2011). https://doi.org/10.1016/j.jphotochem.2011.07.001

    Article  CAS  Google Scholar 

  52. K. Elkabouss, M. Kacimi, M. Ziyad, S. Ammar, F. Bozon-Verduraz, J. Catal. 226, 16–24 (2004). https://doi.org/10.1016/j.jcat.2004.05.007

    Article  CAS  Google Scholar 

  53. M.R. Bayati, A.Z. Moshfegh, F. Golestani-Fard, R. Molaei, Mater. Chem. Phys. 124, 203–207 (2010). https://doi.org/10.1016/j.matchemphys.2010.06.020

    Article  CAS  Google Scholar 

  54. L. Huang, H. Xu, Y. Li, H. Li, X. Cheng, J. Xia, Y. Xu, G. Cai, Dalt Trans. 42, 8606–8616 (2013). https://doi.org/10.1039/c3dt00115f

    Article  CAS  Google Scholar 

  55. G. Wang, L. Zhang, J. Zhang, Chem. Soc. Rev. 41, 797–828 (2012). https://doi.org/10.1039/c1cs15060j

    Article  CAS  Google Scholar 

  56. X. Liu, S. Shi, Q. Xiong, L. Li, Y. Zhang, H. Tang, C. Gu, X. Wang, J. Tu, ACS Appl. Mater. Interfaces. 5, 8790–8795 (2013). https://doi.org/10.1021/am402681m

    Article  CAS  Google Scholar 

  57. X. Yang, K. Xu, R. Zou, J. Hu, Nano–Micro Lett. 8, 143–150 (2016). https://doi.org/10.1007/s40820-015-0069-x

    Article  CAS  Google Scholar 

  58. Y. He, J. Cai, L. Zhang, X. Wang, H. Lin, B. Teng, L. Zhao, W. Weng, H. Wan, M. Fan, Ind. Eng. Chem. Res. 53, 5905–5915 (2014). https://doi.org/10.1021/ie4043856

    Article  CAS  Google Scholar 

  59. H. Yu, X. Quan, S. Chen, H. Zhao, Y. Zhang, J. Photochem. Photobiol. A Chem. 200, 301–306 (2008). https://doi.org/10.1016/j.jphotochem.2008.08.007

    Article  CAS  Google Scholar 

  60. L.V. Taveira, A.A. Sagüés, J.M. Macak, P. Schmuki, J. Electrochem. Soc. 155, C293–C302 (2008). https://doi.org/10.1149/1.2898503

    Article  CAS  Google Scholar 

  61. P. Schmuki, H. Böhni, J.A. Bardwell, J. Electrochem. Soc. 142, 1705–1712 (1995). https://doi.org/10.1149/1.2048644

    Article  CAS  Google Scholar 

  62. A.G. Muñoz, Electrochim. Acta. 52, 4167–4176 (2007). https://doi.org/10.1016/J.electacta.2006.11.035

    Article  Google Scholar 

  63. H. Tsuchiya, J.M. Macak, A. Ghicov, A.S. Räder, L. Taveira, P. Schmuki, Corros. Sci. 49, 203–210 (2007). https://doi.org/10.1016/j.corsci.2006.05.009

    Article  CAS  Google Scholar 

  64. B.P. Nelson, R. Candal, R.M. Corn, M.A. Anderson, Langmuir. 16, 6094–6101 (2000). https://doi.org/10.1021/la9911584

    Article  CAS  Google Scholar 

  65. G.K. Boschloo, A. Goossens, J. Schoonman, J. Electrochem. Soc. 144, 1311–1317 (1997). https://doi.org/10.1149/1.1837590

    Article  CAS  Google Scholar 

  66. L.K. Tsui, T. Homma, G. Zangari, J. Phys. Chem. C 117, 6979–6989 (2013). https://doi.org/10.1021/jp400318n

    Article  CAS  Google Scholar 

  67. D.J. Blackwood, L.M. Peter, Electrochim. Acta. 34, 1505–1511 (1989). https://doi.org/10.1016/0013-4686(89)87033-1

    Article  CAS  Google Scholar 

  68. T. Ohtsuka, T. Otsuki, Corros. Sci. 40, 951–958 (1998). https://doi.org/10.1016/S0010-938X(98)00032-8

    Article  CAS  Google Scholar 

  69. M. Schneider, S. Schroth, J. Schilm, A. Michaelis, Electrochim. Acta. 54, 2663–2671 (2009). https://doi.org/10.1016/j.electacta.2008.11.003

    Article  CAS  Google Scholar 

  70. J. Marsh, D. Gorse, Electrochim. Acta. 43, 659–670 (1998). https://doi.org/10.1016/s0013-4686(97)00210-7

    Article  CAS  Google Scholar 

  71. J.F. McAleer, L.M. Peter, Faraday Discuss. Chem. Soc. 70, 67–80 (1980). https://doi.org/10.1039/dc9807000067

    Article  Google Scholar 

  72. C. da Fonseca, M. Guerreiro Ferreira, M.C. Belo, Electrochim. Acta. 39, 2197–2205 (1994). https://doi.org/10.1016/0013-4686(94)e0174-x

    Article  Google Scholar 

  73. T. Hurlen, S. Hornkjøl, Electrochim. Acta. 36, 189–195 (1991). https://doi.org/10.1016/0013-4686(91)85200-q

    Article  CAS  Google Scholar 

  74. P. Chatterjee, A.K. Chakraborty, Sol. Energy. 232, 312–319 (2022). https://doi.org/10.1016/j.solener.2021.12.075

    Article  CAS  Google Scholar 

  75. J. Zhang, P. Zhang, T. Wang, J. Gong, Nano Energy. 11, 189–195 (2015). https://doi.org/10.1016/j.nanoen.2014.10.021

    Article  CAS  Google Scholar 

  76. I.A. Castro, G. Byzynski, M. Dawson, C. Ribeiro, J. Photochem, Photobiol. A Chem. 339, 95–102 (2017). https://doi.org/10.1016/j.jphotochem.2017.02.024

    Article  CAS  Google Scholar 

  77. M.T. Uddin, Y. Nicolas, C. Olivier, T. Toupance, M.M. Müller, H.J. Kleebe, K. Rachut, J. Ziegler, A. Klein, W. Jaegermann, J. Phys. Chem. C 117, 22098–22110 (2013). https://doi.org/10.1021/jp407539c

    Article  CAS  Google Scholar 

  78. M.G. Ju, G. Sun, J. Wang, Q. Meng, W. Liang, ACS Appl. Mater. Interfaces. 6, 12885–12892 (2014). https://doi.org/10.1021/am502830m

    Article  CAS  Google Scholar 

  79. S. Kouass, H. Dhaouadi, A. Othmani, F. Touati, Electrocatalysis and Electrocatalysts for a Cleaner Environment: Fundamentals and Applications (IntechOpen, London, 2022). https://doi.org/10.5772/intechopen.98759

    Book  Google Scholar 

  80. K. Gelderman, L. Lee, S.W. Donne, J. Chem. Educ. 84, 685 (2007). https://doi.org/10.1021/ed084p685

    Article  CAS  Google Scholar 

  81. M.R. Bayati, F. Golestani-Fard, A.Z. Moshfegh, R. Molaei, Mater. Chem. Phys. 128, 427–432 (2011). https://doi.org/10.1016/j.matchemphys.2011.03.056

    Article  CAS  Google Scholar 

  82. V. Dutta, S. Sharma, P. Raizada, V.K. Thakur, A.A.P. Khan, V. Saini, A.M. Asiri, P. Singh, J. Environ. Chem. Eng. 9, 105018 (2021). https://doi.org/10.1016/j.jece.2020.105018

    Article  CAS  Google Scholar 

  83. E. Bandiello, P. Rodríguez-Hernández, A. Muñoz, M.B. Buenestado, C. Popescu, D. Errandonea, Mater. Adv. 2, 5955–5966 (2021). https://doi.org/10.1039/D1MA00510C

    Article  CAS  Google Scholar 

  84. G.-L. He, M.-J. Chen, Y.-Q. Liu, X. Li, Y.-J. Liu, Y.-H. Xu, Appl. Surf. Sci. 351, 474–479 (2015). https://doi.org/10.1016/j.apsusc.2015.05.159

    Article  CAS  Google Scholar 

  85. P.M. Kulal, D.P. Dubal, C.D. Lokhande, V.J. Fulari, J. Alloys Compd. 509, 2567–2571 (2011). https://doi.org/10.1016/j.jallcom.2010.11.091

    Article  CAS  Google Scholar 

  86. E. Sikora, J. Sikora, D.D. Macdonald, Electrochim. Acta. 41, 783–789 (1996). https://doi.org/10.1016/0013-4686(95)00312-6

    Article  CAS  Google Scholar 

  87. D. Wang, X. Liu, Y. Wu, H. Han, Z. Yang, Y. Su, X. Zhang, G. Wu, D. Shen, J. Alloys Compd. 798, 129–143 (2019). https://doi.org/10.1016/j.jallcom.2019.05.253

    Article  CAS  Google Scholar 

  88. A. Fattah-Alhosseini, M.K. Keshavarz, M. Molaei, S.O. Gashti, Metall. Mater. Trans. A 49, 4966–4979 (2018). https://doi.org/10.1007/s11661-018-4824-8

    Article  CAS  Google Scholar 

  89. S.V. Gnedenkov, S.L. Sinebryukhov, Russ. J. Electrochem. 41, 858–865 (2005). https://doi.org/10.1007/s11175-005-0145-5

    Article  CAS  Google Scholar 

  90. Y. Shen, Z. Zhang, K. Xiao, RSC Adv. 5, 91846–91854 (2015). https://doi.org/10.1039/c5ra18923c

    Article  CAS  Google Scholar 

  91. G.P. Anipsitakis, D.D. Dionysiou, Environ. Sci. Technol. 38, 3705–3712 (2004). https://doi.org/10.1021/es035121o

    Article  CAS  Google Scholar 

  92. S.O. Ganiyu, M. Zhou, C.A. Martínez-Huitle, Appl. Catal. B Environ. 235, 103–129 (2018). https://doi.org/10.1016/j.apcatb.2018.04.044

    Article  CAS  Google Scholar 

  93. G.P. Anipsitakis, D.D. Dionysiou, Environ. Sci. Technol. 37, 4790–4797 (2003). https://doi.org/10.1021/es0263792

    Article  CAS  Google Scholar 

  94. S.K. Ling, S. Wang, Y. Peng, J. Hazard. Mater. 178, 385–389 (2010). https://doi.org/10.1016/j.jhazmat.2010.01.091

    Article  CAS  Google Scholar 

  95. K.-T. Lee, K.-P. Wai, S.-Y. Lu, J. Taiwan. Inst. Chem. Eng. 70, 244–251 (2017). https://doi.org/10.1016/j.jtice.2016.10.057

    Article  CAS  Google Scholar 

  96. C.Y. Kuo, C.Y. Pai, C.H. Wu, M.Y. Jian, Water Sci. Technol. 65, 1970–1974 (2012). https://doi.org/10.2166/wst.2012.095

    Article  CAS  Google Scholar 

  97. M. Pimentel, N. Oturan, M. Dezotti, M.A. Oturan, Appl. Catal. B Environ. 83, 140–149 (2008). https://doi.org/10.1016/j.apcatb.2008.02.011

    Article  CAS  Google Scholar 

  98. I.A. Salem, M.S. El-Maazawi, Chemosphere. 41, 1173–1180 (2000). https://doi.org/10.1016/S0045-6535(00)00009-6

    Article  CAS  Google Scholar 

  99. S. Chaliha, K.G. Bhattacharyya, J. Hazard. Mater. 150, 728–736 (2008). https://doi.org/10.1016/j.jhazmat.2007.05.039

    Article  CAS  Google Scholar 

  100. J. Mu, L. Zhang, M. Zhao, Y. Wang, J. Mol. Catal. A Chem. 378, 30–37 (2013). https://doi.org/10.1016/j.molcata.2013.05.016

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The work was performed within the framework of the Institute of Chemistry FEB RAS State Order (project no. FWFN(205)-2022-0001).

Funding

This work was supported by Institute of Chemistry FEB RAS State Order (Grant No. FWFN(205)-2022-0001).

Author information

Authors and Affiliations

Authors

Contributions

YuBB: investigation, formal analysis, visualization, writing—original draft, writing—review and editing. MSV: conceptualization, methodology, supervision, writing—original draft, writing—review and editing. IVL: validation, writing—original draft writing—review and editing. AYuU: validation, investigation, visualization. VSE: methodology, validation, formal analysis. VGK: investigation. DHS: investigation, visualization.

Corresponding author

Correspondence to Yu. B. Budnikova.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This study does not involve experiments with human tissue or others requiring bioethical approval.

Additional information

Publisher’s Note

Springer nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Budnikova, Y.B., Vasilyeva, M.S., Lukiyanchuk, I.V. et al. FexCo1−xWO4 films on titanium: plasma electrolytic synthesis, optical, electrochemical and photocatalytic properties. J Mater Sci: Mater Electron 34, 1973 (2023). https://doi.org/10.1007/s10854-023-11408-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-11408-4

Navigation