Skip to main content
Log in

Estimation of microstructural parameters by Williamson–Hall, Halder–Wagner, and size–strain plot methods and magnetic properties of (Cu/Mn) co-doped ZnO nanoparticles

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this study, all \({\mathrm{Zn}}_{1-x}{{\mathrm{Cu}}_{0.05}\mathrm{Mn}}_{x}\mathrm{O}\) QUOTE \({\mathrm{Zn}}_{1-{x}}{{\mathrm{Cu}}_{0.05}\mathrm{Mn}}_{{x}}\mathrm{O}\) QUOTE polycrystalline nanoparticles were produced with various compositions \((0.01<x<0.05)\) QUOTE \((0.01<{x}<0.05)\) QUOTE by using sol–gel techniques. Zinc acetate dihydrate, manganese(II), and Cu(II) acetates were used as the precursors for the solutions. Methanol and acetylacetone were used as solvents while preparing the homogenous solutions. Halder–Wagner method (H–W), Williamson–Hall (W–H), and size–strain plot (SSP) were utilized in order to examine the crystal size and intrinsic strain by X-ray diffraction peak expansion analysis. In addition, different models were developed for the definition of microstructural and physical values including stress, strain, and energy density, in the W–H method. The average crystal sizes determined using W–H, SSP, and H–W methods were compared. The magnetic properties of Cu/Mn-doped zinc oxide nanoparticles were analyzed at room temperature. The highest saturation magnetization (Ms) value was found in the 5% wt Mn doping of ZnO and Ms increased with increasing the Mn doping due to the magnetic (paramagnetic) nature of manganese. In this study, XRD peak broadening analysis has been carried out by different models and X-ray peak profile analysis were used to estimate the physical parameters; different models are modified such as W–H plot, SSP method, and H–W method. D–S method, W–H plot, H–W plot, and SSP technique results were highly intercorrelated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The data sharing is not applicable to this article asno datasets were generated or analyzed during the current study.

References

  1. Z.N. Kayani, T. Afzal, S. Riaz, S. Naseem, Optical and structural properties of thin films of ZnO at elevated temperature. J. Alloy. Compd. 606, 177–181 (2014)

    CAS  Google Scholar 

  2. Z.N. Kayani, M. Iqbal, S. Riaz, R. Zia, S. Naseem, Fabrication and properties of zinc oxide thin film prepared by sol-gel dip coating method. Mater. Sci. Pol. 33, 515–520 (2015)

    CAS  Google Scholar 

  3. Z.N. Kayani, F. Saleemi, I. Batool, Effect of calcination temperature on the properties of ZnO nanoparticles. Appl. Phys. A 119, 713–720 (2015)

    CAS  Google Scholar 

  4. K.C. Barick, S. Singh, M. Aslam, D. Bahadur, Porosity and photocatalytic studies of transition metal doped ZnO nanoclusters. Microporous Mesoporous Mater. 134, 195 (2010)

    CAS  Google Scholar 

  5. K. Kaviyarasua, C.M. Magdalanec, K. Kanimozhie, J. Kennedya, B. Siddhardhag, E.S. Reddyh, N.K. Rottei, C.S. Sharmai, F.T. Themaa, D. Letsholathebej, G.T. Molak, M. Maaza, Elucidation of photocatalysis, photoluminescence and antibacterial studies of ZnO thin films by spin coating method. J. Photochem. Photobiol. B Biol. 173, 466–475 (2017)

    Google Scholar 

  6. F. Meng, J. Yin, Y.Q. Duan, Z.H. Yuan, L.J. Bie, Co-precipitation synthesis and gas-sensing properties of ZnO hollow sphere with porous shell. Sens. Actuators B 156, 703 (2011)

    CAS  Google Scholar 

  7. B. Sathyaseelan, E. Manikandan, K. Sivakumar, J. Kennedy, M. Maaza, Enhanced visible photoluminescent and structural properties of ZnO/KIT-6 nanoporous materials for white light emitting diode (w-LED) application. J. Alloys Compd. 651, 479–482 (2015)

    CAS  Google Scholar 

  8. J. Kennedy, P.P. Murmua, J. Leveneura, A. Markwitza, J. Futteraa, Controlling preferred orientation and electrical conductivity of zinc oxide thin films by post growth annealing treatment. Appl. Surf. Sci. 367, 52–58 (2016)

    CAS  Google Scholar 

  9. J. Kennedy, A. Markwitz, Z. Li, W. Gao, C. Kendrick, S.M. Durbin, R. Reeves, Modification of electrical conductivity in RF magnetron sputtered ZnO films by low-energy hydrogen ion implantation. Curr. Appl. Phys.. Appl. Phys. 6, 495–498 (2006)

    Google Scholar 

  10. J. Kennedy, P.P. Murmu, J. Leveneur, M.V. Williams, L.R. Moody, T. Maity, V.S. Chong, Enhanced power factor and increased conductivity of aluminum doped zinc oxide thin films for thermoelectric applications. J. Nanosci. Nanotechnol.Nanosci. Nanotechnol. 18, 1384–1387 (2018)

    CAS  Google Scholar 

  11. Z. Liu, C. Liu, J. Ya, E. Lei, Controlled synthesis of ZnO and TiO2 nanotubes by chemical method and their application in dye-sensitized solar cells. Renew. Energy 36, 1177 (2011)

    CAS  Google Scholar 

  12. Z. Jin, T. Fukumura, M. Kawasaki, K. Ando, H. Saito, T. Sekiguchi, Y. Yoo, M. Murakami, Y. Matsumoto, T. Hasegawa, High throughput fabrication of transition-metaldoped epitaxial ZnO thin films: A series of oxide-diluted magnetic semiconductors and their properties. Appl. Phys. Lett. 78, 3824–3826 (2001)

    CAS  Google Scholar 

  13. F. Pan, C. Song, X. Liu, Y. Yang, F. Zeng, Ferromagnetism and possible application in spintronics of transition-metal-doped ZnO films. Mater. Sci. Eng. R Reports 62, 1–35 (2008)

    Google Scholar 

  14. S. Singh, M.R. Rao, Optical and electrical resistivity studies of isovalent and aliovalent 3 d transition metal ion doped ZnO. Phys. Rev. B 80, 045210 (2009)

    Google Scholar 

  15. S. Singhal, J. Kaur, T. Namgyal, R. Sharma, Cu-doped ZnO nanoparticles: synthesis, structural and electrical properties. Physica B 407, 1223–1226 (2012)

    CAS  Google Scholar 

  16. H. Liu, J. Yang, Y. Zhang, L. Yang, M. Wei, X. Ding, Structure and magnetic properties of Fe-doped ZnO prepared by the sol–gel method. J. Phys. Condens. MatterCondens. Matter 21, 145803 (2009)

    Google Scholar 

  17. P.G. Undre, P.B. Kharat, R. Kathare, K. Jadhav, Ferromagnetism in Cu 2+ doped ZnO nanoparticles and their physical properties. J. Mater. Sci. Mater. Electron. 30, 4014–4025 (2019)

    CAS  Google Scholar 

  18. D. Raoufi, Synthesis and microstructural properties of ZnO nanoparticles prepared by precipitation method. Renew. Energy 50, 932 (2013)

    CAS  Google Scholar 

  19. M.M. Ba-Abbad, A.A.H. Kadhum, A.B. Mohamad, M.S. Takriff, K. Sopian, Optimization of process parameters using D-optimal design for synthesis of ZnO nanoparticles via sol–gel technique. J. Ind. Eng. Chem. 19, 99 (2013)

    CAS  Google Scholar 

  20. T. Wangensteen, T. Dhakal, M. Merlak, P. Mukherjee, M.H. Phan, S. Chandra, H. Srikanth, S. Witanachchi, Growth of uniform ZnO nanoparticles by a microwave plasma process. J. Alloys Compd. 509, 6859 (2011)

    CAS  Google Scholar 

  21. B. Woeichieng, Y.Y. Loo, Synthesis of ZnO nanoparticles by modified polyol method. Mater. Lett. 73, 78 (2012)

    Google Scholar 

  22. P. Rai, Y.-T. Yu, Citrate-assisted hydrothermal synthesis of single crystalline ZnO nanoparticles for gas sensor application. Sens. Actuators B Chem. 173, 58 (2012)

    CAS  Google Scholar 

  23. M. Vaghayenegar, A. Kermanpur, M.H. Abbasi, Bulk synthesis of ZnO nanoparticles by the one-step electromagnetic levitational gas condensation method. Ceram. Int. 38, 5871 (2012)

    CAS  Google Scholar 

  24. Y. Liu, Y. Yang, J. Yang, Q. Guan, H. Liu, L. Yang, Y. Zhang, Y. Wang, M. Wei, X. Liu, L. Fei, X. Cheng, Intrinsic ferromagnetic properties in Cr-doped ZnO diluted magnetic semiconductors. J. Solid State Chem. 184, 1273 (2011)

    CAS  Google Scholar 

  25. R. Saleh, N.F. Djaja, S.P. Prakoso, The correlation between magnetic and structural properties of nanocrystalline transition metal-doped ZnO particles prepared by the co-precipitation method. J. Alloys Compd. 546, 48 (2012)

    Google Scholar 

  26. F. Ahmed, S. Kumar, N. Arshi, M.S. Anwar, B.H. Koo, C.G. Lee, Doping effects of Co2+ ions on structural and magnetic properties of ZnO nanoparticles. Microelectron. Eng.. Eng. 89, 129 (2012)

    CAS  Google Scholar 

  27. R. Narzary, B. Dey, S.N. Rout, A. Mondal, G. Bouzerar, M. Kar, S. Ravi, S.K. Srivastava, Influence of K/Mg co-doping in tuning room temperature d0 ferromagnetism, optical and transport properties of ZnO compounds for spintronics applications. J. Alloys Compd. 934, 167874 (2023)

    CAS  Google Scholar 

  28. B. Dey, R. Narzary, S.K. Panda, J. Mallick, A. Mondal, S. Ravi, M. Kar, S.K. Srivastava, Room temperature d0 ferromagnetism, band-gap reduction, and high optical transparency in p-type K-doped ZnO compounds for spintronics applications. Mater. Sci. Semicond. Process. Process. 148, 106798 (2022)

    CAS  Google Scholar 

  29. B. Dey, R. Narzary, L. Chouhan, S. Bhattacharjee, B.N. Parida, A. Mondal, S. Ravi, S.K. Srivastava, Crystal structure, optical and dielectric properties of Ag:ZnO composite-like compounds. J. Mater. Sci. Mater. Electron. 33, 2855–2868 (2022)

    CAS  Google Scholar 

  30. L. Chouhan, G. Bouzerar, S.K. Srivastava, d0 ferromagnetism in Li-doped ZnO compounds. J. Mater. Sci. Mater. Electron. 32, 6389–6397 (2021)

    CAS  Google Scholar 

  31. B. Dey, S. N. Rout, M. Kar, S. K. Srivastava, Room Temperature d0 Ferromagnetism of Ag:ZnO Compounds, Journal of Superconductivity and Novel Magnetism 36, 657–663 (2023).

  32. V.D. Mote, Y. Purushotham, B.N. Dole, Williamson-Hall analysis in estimation of lattice strain in nanometer-sized ZnO particles. J. Theoret. Appl. Phys. 6, 6 (2012)

    Google Scholar 

  33. E. Emil, S. Gürmen, Estimation of yttrium oxide microstructural parameters using the Williamson-Hall analysis. Mater. Sci. Technol. 34, 1549–1557 (2018)

    CAS  Google Scholar 

  34. D. Nath, F. Singh, R. Das, X-ray diffraction analysis by Williamson-Hall, Halder-Wagner and size-strain plot methods of CdSe nanoparticles- a comparative study. Mater. Chem. Phys. 239, 122021 (2020)

    CAS  Google Scholar 

  35. S. Sarkar, R. Das, Determination of structural elements of synthesized silver nano-hexagon from X-ray diffraction analysis. Indian J. Pure Appl. Phys. 56, 765–772 (2018)

    Google Scholar 

  36. S. Sarkar, R. Das, Shape effect on the elastic properties of Ag nanocrystals. Micro Nano Lett. 13, 312–315 (2018)

    CAS  Google Scholar 

  37. D. Balzar, H. Ledbetter, Voigt-function modeling in fourier analysis of size- and strain-broadened X-ray diffraction peaks. J. Appl. Crystallogr.Crystallogr. 26, 97–103 (1993)

    Google Scholar 

  38. A. Hepp, C. Baerlocher, Learned peak shape functions for powder diffraction data. Aust. J. Phys. 41, 229–236 (1988)

    CAS  Google Scholar 

  39. N.C. Halder, C.N.J. Wagner, Separation of particle size and lattice strain in integral breadth measurements. Acta Crystallogr. Crystallogr. 20, 312–331 (1966)

    CAS  Google Scholar 

  40. S. Gopinath, JohnPhilip, Preparation of metal oxide nanoparticles of different sizes and morphologies, their characterization using small angle X-ray scattering and study of thermal properties. Mater. Chem. Phys. 145, 213–221 (2014)

    CAS  Google Scholar 

  41. A.C. Murrieta, D. Cavazos-Cavazos, P. Santos-Aguilar, J.L. Cholula-Díaz, F.F. Contreras-Torres, Microstructure of polycrystalline gold nanoparticles and thin-films from a comparative X-ray line profile analysis. Mater. Chem. Phys. 258, 123976 (2021)

    CAS  Google Scholar 

  42. M. Shobana, S.R. Meher, Structural, optical and magnetic properties of cobalt-doped ZnTe dilute magnetic semiconductors. J. Mater. Sci. Mater. Electron. 31, 15140–15152 (2020)

    CAS  Google Scholar 

  43. Z.N. Kayani, A. Usman, H. Nazli, R. Sagheer, S. Riaz, S. Naseem, Dielectric and magnetic properties of dilute magnetic semiconductors Ag-doped ZnO thin films. Appl. Phys. A 126, 559 (2020)

    CAS  Google Scholar 

  44. H.B. Wang, H. Wang, C. Zhang, F.J. Yang, J.X. Duan, C.P. Yang, H.S. Gu, M.J. Zhou, Q. Li, Y. Jiang, Preparation and Characterization of Mn and (Mn, Cu) Co-Doped ZnO Nanostructures. J. Nanosci. Nanotechnol.Nanosci. Nanotechnol. 9, 3308–3312 (2009)

    CAS  Google Scholar 

  45. A.A. Dakhel, Study of structural, optical and magnetic properties of hydrogenated Ni and (Ga, Zn) co-doped SnO2 nanocomposites. Mater. Chem. Phys. 252, 123163 (2020)

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Kastamonu University Scientific Research Projects Coordination Department under the Grant No. KÜ-BAP01/2020-75, KÜ-BAP01/2019-64 and Kastamonu University Research and Application Center for the supports.

Funding

Kastamonu Üniversitesi, KÜ-BAP01/2019–64, O. Ozturk, KÜ-BAP01/2020–75, Elif Asikuzun.

Author information

Authors and Affiliations

Authors

Contributions

All authors have contributed sufficiently in the planning, execution, or analysis of this study to be included as authors. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to E. Asikuzun Tokeser.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest regarding the publication of this article.

Compliance with Ethical Standards

This material is the authors’ own original work, which has not been previously published elsewhere. The paper reflects the authors’ own research and analysis in a truthful and complete manner. The results are appropriately placed in the context of prior and existing research. All authors have been personally and actively involved in substantial work leading to the paper and will take public responsibility for its content.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tokeser, E.A., Ozturk, O. Estimation of microstructural parameters by Williamson–Hall, Halder–Wagner, and size–strain plot methods and magnetic properties of (Cu/Mn) co-doped ZnO nanoparticles. J Mater Sci: Mater Electron 34, 2075 (2023). https://doi.org/10.1007/s10854-023-11402-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-11402-w

Navigation