Skip to main content
Log in

High spectral responsivity and specific detectivity of p-MoS2/n-Si heterojunction photodetector for near-IR detection via facile solution process

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The simple and large-scale photodetector fabrication with superior performance is challenging. In this report, we studied the photodetector properties of simple and solution-processed MoS2 photodetector for NIR applications. The MoS2 nanosheets were synthesized via hydrothermal method and their structural, optical, chemical composition, and morphological properties have been explored in detail. The p-MoS2/n-Si (111) heterojunction was fabricated by spin coating method followed by vacuum annealing. The photodetector properties (photocurrent, responsivity, and detectivity) were studied over a broadband wavelength range from 300 to 1100 nm. The MoS2 photodetector shows excellent spectral response (600 mA/W), high specific detectivity (0.4922 × 1012 Jones), and short response/decay time (1/1 s) in NIR regime, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

Data are available from the authors upon reasonable request and with permission.

References

  1. K. Ramakrishnan, B. Ajitha, Y. Ashok Kumar Reddy, Sens. Actuators Phys. 349, 114051 (2023)

    Article  CAS  Google Scholar 

  2. A. Mondal, P.V.K. Yadav, Y. Ashok Kumar Reddy, Mater. Today Commun. 34, 105094 (2023)

    Article  CAS  Google Scholar 

  3. C. Xie, C. Mak, X. Tao, F. Yan, Adv. Funct. Mater. 27, 1603886 (2017)

    Article  Google Scholar 

  4. S. Sankaranarayanan, S. Neti, R. Yalambaku, G.K. Mamidipudi, Mater. Chem. Phys. 301, 127663 (2023)

    Article  CAS  Google Scholar 

  5. H. Wang, D.H. Kim, Chem. Soc. Rev. 46, 5204 (2017)

    Article  CAS  Google Scholar 

  6. G.Y. Huang, Y. Hao, S.Q. Li, Y.D. Jia, J.C. Guo, H. Zhang, B. Wang, J. Phys. D Appl. Phys. 56, 1–10 (2023)

    Google Scholar 

  7. M. Bernardi, M. Palummo, J.C. Grossman, Nano Lett. 13, 3664 (2013)

    Article  CAS  Google Scholar 

  8. Y. Zhang, J. Wang, Q. Liu, S. Gu, Z. Sun, P.K. Chu, X. Yu, APL Mater. 8, 120903 (2020)

    Article  CAS  Google Scholar 

  9. T. Hu, R. Zhang, J.-P. Li, J.-Y. Cao, F. Qiu, Chip 1, 100017 (2022)

    Article  Google Scholar 

  10. Y. Kim, J. Kim, Nanophotonics 10, 3397 (2021)

    Article  CAS  Google Scholar 

  11. S.A. Han, R. Bhatia, S.W. Kim, Nano Converg. 2, 1 (2015)

    Article  Google Scholar 

  12. J. Mao, B. Zhang, Y. Shi, X. Wu, Y. He, D. Wu, J. Jie, C.S. Lee, X. Zhang, Adv. Funct. Mater. 32, 2108174 (2022)

    Article  CAS  Google Scholar 

  13. O.A. Abbas, C.C. Huang, D.W. Hewak, S. Mailis, P. Sazio, Opt. Mater. X 13, 100135 (2022)

    CAS  Google Scholar 

  14. W. Seo, W. Park, H.Y. Seo, S. Oh, O. Kwon, S.H. Jeong, D.H. Kim, M.J. Kim, S.K. Lee, B.H. Lee, B. Cho, Appl. Surf. Sci. 604, 154485 (2022)

    Article  CAS  Google Scholar 

  15. A. Taffelli, S. Dirè, A. Quaranta, L. Pancheri, Sensors 21, 2758 (2021)

    Article  CAS  Google Scholar 

  16. A. Zhuravlova, A.G. Ricciardulli, D. Pakulski, A. Gorczyński, A. Kelly, J.N. Coleman, A. Ciesielski, P. Samorì, Small (2023). https://doi.org/10.1002/smll.202208100

    Article  Google Scholar 

  17. S. Chiu et al., Eur. J. Pediatri. 182, 1155 (2023)

    Article  Google Scholar 

  18. P.D. Agosta, F. Tumino, Crystals 13, 7493 (2023)

    Google Scholar 

  19. J.H. Jeong, Y. Jung, J. Park, G. Lee, Nano Lett. 23, 3085 (2023)

    Article  CAS  Google Scholar 

  20. P. Bharathi, S. Harish, M. Shimomura, S. Ponnusamy, M.K. Mohan, J. Archana, M. Navaneethan, Sens. Actuators B Chem. 360, 131600 (2022)

    Article  CAS  Google Scholar 

  21. D. Cho, S. Park, B. Im, Y. Kim, S. Kim, S. Lee, D. Byun, Appl. Surf. Sci. 625, 157235 (2023)

    Article  CAS  Google Scholar 

  22. V. Dhyani, S. Das, Sci. Rep. 7, 2 (2017)

    Article  Google Scholar 

  23. H. Badahdah, A. Kutbee, D. Katowah, M.A. Hussein, N. Al-Ahmadi, R. Altuwirqi, H. Al-Jawhari, Mater. Res. Bull. 138, 111229 (2021)

    Article  CAS  Google Scholar 

  24. M. Sabarinathan, S. Harish, J. Archana, M. Navaneethan, H. Ikeda, Y. Hayakawa, RSC Adv. 6, 109495 (2016)

    Article  CAS  Google Scholar 

  25. H. Liu, J.G. Wang, W. Hua, Z. You, Z. Hou, J. Yang, C. Wei, F. Kang, Energy Storage Mater. 35, 731 (2021)

    Article  Google Scholar 

  26. X. Wen, D. Du, L. Ren, H. Xu, R. Li, C. Zhao, C. Shu, Chem. Eng. J. 442, 136311 (2022)

    Article  CAS  Google Scholar 

  27. D. Sahoo, B. Kumar, J. Sinha, S. Ghosh, S.S. Roy, B. Kaviraj, Sci. Rep. 10, 1 (2020)

    Article  Google Scholar 

  28. R. Luo, W.W. Xu, Y. Zhang, Z. Wang, X. Wang, Y. Gao, P. Liu, M. Chen, Nat. Commun. 11, 1 (2020)

    Article  Google Scholar 

  29. L.N. Long, N.T. Quang, T.T. Khuong, P.T. Kien, N.H. Thang, T. Van Khai, J. Sol–Gel Sci. Technol. 106, 699 (2023)

    Article  CAS  Google Scholar 

  30. M. Thripuranthaka, R.V. Kashid, C.S. Rout, D.J. Late, Appl. Phys. Lett. 104, 081911 (2014)

    Article  Google Scholar 

  31. G. He, Y. Zhang, Q. He, Catalysts 9, 19 (2019)

    Google Scholar 

  32. Y.H. Zhou, Z.B. Zhang, P. Xu, H. Zhang, B. Wang, Nanoscale Res. Lett. 14, 1–10 (2019)

    Article  Google Scholar 

  33. P. Nivetha, B. Kavitha, M. Kalanithi, J. Sci. Adv. Mater. Devices 6, 65 (2021)

    Article  CAS  Google Scholar 

  34. H. Ji, S. Hu, S. Shi, B. Guo, W. Hou, G. Yang, J. Mater. Sci. 53, 14548 (2018)

    Article  CAS  Google Scholar 

  35. X. Geng, W. Sun, W. Wu, B. Chen, A. Al-Hilo, M. Benamara, H. Zhu, F. Watanabe, J. Cui, T.P. Chen, Nat. Commun. 7, 1825 (2016)

    Google Scholar 

  36. P. Bharathi, S. Harish, G. Mathankumar, M. Krishna Mohan, J. Archana, S. Kamalakannan, M. Prakash, M. Shimomura, M. Navaneethan, Appl. Surf. Sci. 600, 154086 (2022)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author acknowledges the Centre for Nanodevices fabrication, Shizuoka University, Hamamatsu, Japan for support of the instrument facilities. The authors thank the management of SRM Institute of Science and Technology for the support through SEED, STARTUP grant, and Nanotechnology Research Center (NRC) for the research facilities.

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

KS contributed toward methodology, validation, formal analysis, and writing original draft. EV contributed toward methodology, validation, formal analysis, and writing original draft. SH contributed toward investigation, data curation, and writing original draft. MN contributed toward idea, investigation, visualization, and writing original draft. KH contributed toward supervision, visualization, and writing review & editing.

Corresponding authors

Correspondence to M. Navaneethan or K. Hara.

Ethics declarations

Competing interests

The authors have no relevant financial or non-financial interests to disclose.

Informed consent

The present work does not involve any animal or human participants.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Silambarasan, K., Vinoth, E., Harish, S. et al. High spectral responsivity and specific detectivity of p-MoS2/n-Si heterojunction photodetector for near-IR detection via facile solution process. J Mater Sci: Mater Electron 34, 1975 (2023). https://doi.org/10.1007/s10854-023-11375-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-11375-w

Navigation