Skip to main content

Advertisement

Log in

Activation of peroxydisulfate by magnetic MoS2/CoFe2O4 composite catalyst for efficient degradation of tetracycline in water

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Persulfate-based advanced oxidation process (PS-AOPs) is a promising technique for removing antibiotic contaminants from water. Magnetic MoS2/CoFe2O4 nanocomposites were synthesized by a hydrothermal method and first used to activate peroxydisulfate (PDS) to degrade tetracycline (TC). The optimal MoS2/CoFe2O4-20 catalyst achieved 96.2% degradation efficiency of TC (20 mg L−1) in the presence of PDS (1.5 g L−1) after 80 min, which was significantly higher than that of pure MoS2 and CoFe2O4. Moreover, MoS2/CoFe2O4 catalysts exhibited a better catalytic activity for TC removal by activating PDS than that of recently reported ferrite-based catalysts. The influence of initial pH, PDS dosage and inorganic anions on the removal of TC in MoS2/CoFe2O4-20/PDS oxidation system was studied. The quenching experiments and electron paramagnetic resonance (EPR) experiments show that the free radical (O2·−, SO4·− and ·OH) and non-radical (1O2) oxidation pathways collectively led to TC degradation in MoS2/CoFe2O4/PDS system. The exposed Mo(IV) sites on the surface of MoS2 can accelerate the cycle ≡ X(III)/ ≡ X(II) (X = Co or Fe) and the decomposition of PDS to generate the reactive species, thus enhancing the removal efficiency of TC. Cycling test confirms that as-synthesized MoS2/CoFe2O4 can be easily recovered and effectively reused. Besides, the removal of TC from various water matrices was also studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Scheme 2
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The authors declare that all data supporting the findings of this study are available within the article.

References

  1. H. Kim, Y. Hong, J.-E. Park, V.K. Sharma, S.I. Cho, Sulfonamides and tetracyclines in livestock wastewater. Chemosphere 91, 888 (2013). https://doi.org/10.1016/j.chemosphere.2013.02.027

    Article  CAS  Google Scholar 

  2. P. Kovalakova, L. Cizmas, T.J. McDonald, B. Marsalek, M. Feng, V.K. Sharma, Occurrence and toxicity of antibiotics in the aquatic environment: a review. Chemosphere 251, 126351 (2020). https://doi.org/10.1016/j.chemosphere.2020.126351

    Article  CAS  Google Scholar 

  3. R. Pulicharla, K. Hegde, S.K. Brar, R.Y. Surampalli, Tetracyclines metal complexation: significance and fate of mutual existence in the environment. Environ. Pollut. 221, 1 (2017). https://doi.org/10.1016/j.envpol.2016.12.017

    Article  CAS  Google Scholar 

  4. M.C. Danner, A. Robertson, V. Behrends, J. Reiss, Antibiotic pollution in surface fresh waters: occurrence and effects. Sci. Total. Environ. 664, 793 (2019). https://doi.org/10.1016/j.scitotenv.2019.01.406

    Article  CAS  Google Scholar 

  5. P. Chen, Y.J. Gou, J.M. Ni, Y.M. Liang, B.Q. Yang, F.F. Jia, S.X. Song, Efficient ofloxacin degradation with Co(II)-doped MoS2 nano-flowers as PMS activator under visible-light irradiation. Chem. Eng. J. 401, 125978 (2020). https://doi.org/10.1016/j.cej.2020.125978

    Article  CAS  Google Scholar 

  6. L. Yang, X. Bai, J. Shi, X.Y. Du, L. Xu, P.K. Jin, Visible-light activation of persulfate by TiO2/g-C3N4 photocatalyst toward efficient degradation of micropollutants. Chem. Eng. J. 384, 123245 (2020). https://doi.org/10.1016/j.cej.2019.123245

    Article  CAS  Google Scholar 

  7. A. Hassani, P. Eghbali, B. Kakavandi, K.-Y.A. Lin, F. Ghanbari, Acetaminophen removal from aqueous solutions through peroxymonosulfate activation by CoFe2O4/mpg-C3N4 nanocomposite: insight into the performance and degradation kinetics. Environ. Technol. Innovation. 20, 101127 (2020). https://doi.org/10.1016/j.eti.2020.101127

    Article  CAS  Google Scholar 

  8. Q. Yang, Y.H. Ma, F. Chen, F.B. Yao, J. Sun, S.N. Wang, K.X. Yi, L.H. Hou, X.M. Li, D.B. Wang, Recent advances in photo-activated sulfate radical-advanced oxidation process (SR-AOP) for refractory organic pollutants removal in water. Chem. Eng. J. 378, 122149 (2019). https://doi.org/10.1016/j.cej.2019.122149

    Article  CAS  Google Scholar 

  9. R.M. Li, H.W. Hu, Y.Y. Ma, X.Y. Liu, L.T. Zhang, S.R. Zhou, B.Y. Deng, H. Lin, H. Zhang, Persulfate enhanced photocatalytic degradation of bisphenol A over wasted batteries-derived ZnFe2O4 under visible light. J. Clean. Prod. 276, 124246 (2020). https://doi.org/10.1016/j.jclepro.2020.124246

    Article  CAS  Google Scholar 

  10. S. Wacławek, H.V. Lutze, K. Grübel, V.V.T. Padil, M. Černík, D.D. Dionysiou, Chemistry of persulfates in water and wastewater treatment: a review. Chem. Eng. J. Molybdenum Disulfide 330, 44 (2017). https://doi.org/10.1016/j.cej.2017.07.132

    Article  CAS  Google Scholar 

  11. A.S. Sethulekshmi, J.S. Jayan, S. Appukuttan, K. Joseph, MoS2: advanced nanofiller for reinforcing polymer matrix. Phys. E. 132, 114716 (2021). https://doi.org/10.1016/j.physe.2021.114716

    Article  CAS  Google Scholar 

  12. H.Y. Zhou, L.D. Lai, Y.J. Wan, Y.G. He, G. Yao, B. Lai, Molybdenum disulfide (MoS2): a versatile activator of both peroxymonosulfate and persulfate for the degradation of carbamazepine. Chem. Eng. J. (2020). https://doi.org/10.1016/j.cej.2019.123264

    Article  Google Scholar 

  13. X.M. Song, J.Y. Tian, J.X. Ma, J.X. Ni, D.M. Liu, W. Wang, W.X. Shi, Y.X. Yuan, F.Y. Cui, Z. Chen, Peroxydisulfate activation by a versatile ball-milled nZVI@MoS2 composite: performance and potential activation mechanism. Chem. Eng. J. (2023). https://doi.org/10.1016/j.cej.2022.139830

    Article  Google Scholar 

  14. Y. Tan, C.Q. Li, Z.M. Sun, R.Z. Bian, X.B. Dong, X.W. Zhang, S.L. Zheng, Natural diatomite mediated spherically monodispersed CoFe2O4 nanoparticles for efficient catalytic oxidation of bisphenol A through activating peroxymonosulfate. Chem. Eng. J. 388, 124386 (2020). https://doi.org/10.1016/j.cej.2020.124386

    Article  CAS  Google Scholar 

  15. J. Li, M.J. Xu, G. Yao, B. Lai, Enhancement of the degradation of atrazine through CoFe2O4 activated peroxymonosulfate (PMS) process: kinetic, degradation intermediates, and toxicity evaluation. Chem. Eng. J. 348, 1012 (2018). https://doi.org/10.1016/j.cej.2018.05.032

    Article  CAS  Google Scholar 

  16. S. Feng, M.G. Yu, T.P. Xie, T. Li, D.S. Kong, J.W. Yang, C.L. Cheng, H.Y. Chen, J.K. Wang, MoS2/CoFe2O4 heterojunction for boosting photogenerated carrier separation and the dominant role in enhancing peroxymonosulfate activation. Chem. Eng. J. 433, 134467 (2022). https://doi.org/10.1016/j.cej.2021.134467

    Article  CAS  Google Scholar 

  17. X.M. Peng, Z.H. Yang, F.P. Hu, C.Q. Tan, Q.Y. Pan, H.L. Dai, Mechanistic investigation of rapid catalytic degradation of tetracycline using CoFe2O4@MoS2 by activation of peroxymonosulfate. Sep. Purif. Technol. 287, 120525 (2022). https://doi.org/10.1016/j.seppur.2022.120525

    Article  CAS  Google Scholar 

  18. G.S. Wang, F. Zhou, Z.W. Lu, Y.Y. Ma, X.G. Li, Y. Tong, X.F. Dong, Controlled synthesis of CoFe2O4/MoS2 nanocomposites with excellent sedimentation stability for magnetorheological fluid. J. Ind. Eng. Chem. 70, 439 (2019). https://doi.org/10.1016/j.jiec.2018.11.006

    Article  CAS  Google Scholar 

  19. J. Kiwi, S. Rtimi, Insight into the interaction of magnetic photocatalysts with the incoming light accelerating bacterial inactivation and environmental cleaning. Appl. Catal. B Environ. 281, 119420 (2021). https://doi.org/10.1016/j.apcatb.2020.119420

    Article  CAS  Google Scholar 

  20. H. Zhang, Y. Zhou, Y. Zhang, Z. Hu, X. Gao, X. Wang, Z. Wu, Two-dimensional MoS2 lattice constrained Cu(I) enables high activity and superior stability in visible-light-assisted peroxymonosulfate activation. Sep. Purif. Technol. 315, 123671 (2023). https://doi.org/10.1016/j.seppur.2023.123671

    Article  CAS  Google Scholar 

  21. C. Nethravathi, J. Prabhu, S. Lakshmipriya, M. Rajamathi, Magnetic Co-doped MoS2 nanosheets for efficient catalysis of nitroarene reduction. ACS Omega 2, 5891 (2017). https://doi.org/10.1021/acsomega.7b00848

    Article  CAS  Google Scholar 

  22. T. Zhang, C.J. Li, J. Ma, H. Tian, Z.M. Qiang, Surface hydroxyl groups of synthetic α-FeOOH in promoting OH generation from aqueous ozone: property and activity relationship. Appl. Catal. B Environ. 82, 131 (2008). https://doi.org/10.1016/j.apcatb.2008.01.008

    Article  CAS  Google Scholar 

  23. L.J. Luo, J.H. Li, J.H. Dai, L.H. Xia, C.J. Barrow, H.B. Wang, J. Jegatheesan, M. Yang, Bisphenol A removal on TiO2–MoS2-reduced graphene oxide composite by adsorption and photocatalysis. Process. Saf. Environ. Prot. 112, 274 (2017). https://doi.org/10.1016/j.psep.2017.04.032

    Article  CAS  Google Scholar 

  24. K. Srinivas, Y. Chen, Z. Su, B. Yu, M. Karpuraranjith, F. Ma, X.Q. Wang, W.L. Zhang, D.X. Yang, Heterostructural CoFe2O4/CoO nanoparticles-embedded carbon nanotubes network for boosted overall water-splitting performance. Electrochim. Acta 404, 139745 (2022). https://doi.org/10.1016/j.electacta.2021.139745

    Article  CAS  Google Scholar 

  25. K. Dou, Y.K. Lu, R.C. Wang, H.P. Cao, C. Yao, J.L. Liu, N. Tsidaeva, W. Wang, (1T/2H)-MoS2/CoFe2O4 heterojunctions with a unique grape bunch structure for photocatalysis of organic dyes driven by visible light. Appl. Surf. Sci. 605, 154751 (2022). https://doi.org/10.1016/j.apsusc.2022.154751

    Article  CAS  Google Scholar 

  26. Y.F. Jia, H.X. Ma, C.L. Liu, Au nanoparticles enhanced Z-scheme Au-CoFe2O4/MoS2 visible light photocatalyst with magnetic retrievability. Appl. Surf. Sci. 463, 854 (2019). https://doi.org/10.1016/j.apsusc.2018.09.008

    Article  CAS  Google Scholar 

  27. Y.W. Zhong, K.M. Shi, Z.H. Diao, G. Song, M.H. Su, L.A. Hou, D.Y. Chen, L.J. Kong, Peroxymonosulfate activation through LED-induced ZnFe2O4 for levofloxacin degradation. Chem. Eng. J. 417, 129225 (2021). https://doi.org/10.1016/j.cej.2021.129225

    Article  CAS  Google Scholar 

  28. S.N. Nguyen, T.K. Truong, S.J. You, Y.F. Wang, T.M. Cao, V.V. Pham, Investigation on photocatalytic removal of NO under visible light over Cr-doped ZnO nanoparticles. ACS Omega 4, 12853 (2019). https://doi.org/10.1021/acsomega.9b01628

    Article  CAS  Google Scholar 

  29. M.Y. Xing, W.J. Xu, C.C. Dong, Y.C. Bai, J.B. Zeng, Y. Zhou, J.L. Zhang, Y.D. Yin, Metal sulfides as excellent co-catalysts for H2O2 decomposition in advanced oxidation processes. Chem 4(6), 1359–1372 (2018). https://doi.org/10.1016/j.chempr.2018.03.002

    Article  CAS  Google Scholar 

  30. Y. Li, Y. Feng, B. Yang, Z. Yang, K. Shi, Activation of peroxymonosulfate by molybdenum disulfide-mediated traces of Fe(III) for sulfadiazine degradation. Chemosphere 283, 131212 (2021). https://doi.org/10.1016/j.chemosphere.2021.131212

    Article  CAS  Google Scholar 

  31. R. Chen, W. Wang, X.R. Zhao, Y.J. Zhang, S.Z. Wu, F. Li, Rapid hydrothermal synthesis of magnetic CoxNi1xFe2O4 nanoparticles and their application on removal of Congo red. Chem. Eng. J. 242, 226 (2014). https://doi.org/10.1016/j.cej.2013.12.016

    Article  CAS  Google Scholar 

  32. Y.K. Lu, B.Y. Ren, S.C. Chang, W.B. Mi, J. He, W. Wang, Achieving effective control of the photocatalytic performance for CoFe2O4/MoS2 heterojunction via exerting external magnetic fields. Mater. Lett. 260, 126979 (2020). https://doi.org/10.1016/j.matlet.2019.126979

    Article  CAS  Google Scholar 

  33. X.Y. Meng, Q.B. He, T.T. Song, M. Ge, Z.X. He, C.S. Guo, Activation of peroxydisulfate by magnetically separable rGO/MnFe2O4 toward oxidation of tetracycline: efficiency, mechanism and degradation pathways. Sep. Purif. Technol. 282, 120137 (2022). https://doi.org/10.1016/j.seppur.2021.120137

    Article  CAS  Google Scholar 

  34. Z.H. Xie, C.S. He, H.Y. Zhou, L.L. Li, Y. Liu, Y. Du, W. Liu, Y. Mu, B. Lai, Effects of molecular structure on organic contaminants’ degradation: efficiency and dominant ROS in the advanced oxidation process with multiple ROS. Environ. Sci. Technol. 56(12), 8784–8795 (2022). https://doi.org/10.1021/acs.est.2c00464

    Article  CAS  Google Scholar 

  35. T. Ye, Z. Wei, R. Spinney, C.J. Tang, S. Luo, R. Xiao, D.D. Dionysiou, Chemical structure-based predictive model for the oxidation of trace organic contaminants by sulfate radical. Water Res. 116, 106–115 (2017). https://doi.org/10.1016/j.watres.2017.03.015

    Article  CAS  Google Scholar 

  36. Z.M. Liu, Z.M. Gao, Q. Wu, Activation of persulfate by magnetic zirconium-doped manganese ferrite for efficient degradation of tetracycline. Chem. Eng. J. 423, 130283 (2021). https://doi.org/10.1016/j.cej.2021.130283

    Article  CAS  Google Scholar 

  37. S.M. Liu, Y.C. Liu, M.Y. Chen, L.L. Li, W.W. Tu, Z. Huang, CuFe2O4 modified expanded graphite synthesized by urea-assisted hydrothermal method for tetracycline treatment through persulfate activation: characterization, mechanism and degradation intermediates. Chem. Eng. J. 433, 133516 (2022). https://doi.org/10.1016/j.cej.2021.133516

    Article  CAS  Google Scholar 

  38. S. Tang, M. Zhao, D. Yuan, X. Li, Z. Wang, X. Zhang, T. Jiao, J. Ke, Fe3O4 nanoparticles three-dimensional electro-peroxydisulfate for improving tetracycline degradation. Chemosphere 268, 129315 (2021). https://doi.org/10.1016/j.chemosphere.2020.129315

    Article  CAS  Google Scholar 

  39. P.H. Guo, Y.Q. Zhou, Y.B. Zhang, Y.K. Li, H.P. Lei, H. Zhang, S.Q. Li, Insights into the well-dispersed nano-Fe3O4 catalyst supported by N-doped biochar prepared from steel pickling waste liquor for activating peroxydisulfate to degrade tetracycline. Chem. Eng. J. 464, 142548 (2023). https://doi.org/10.1016/j.cej.2023.142548

    Article  CAS  Google Scholar 

  40. X.W. Zhang, F. Wang, C.C. Wang, P. Wang, H.F. Fu, C. Zhao, Photocatalysis activation of peroxodisulfate over the supported Fe3O4 catalyst derived from MIL-88A(Fe) for efficient tetracycline hydrochloride degradation. Chem. Eng. J. 426, 131927 (2021). https://doi.org/10.1016/j.cej.2021.131927

    Article  CAS  Google Scholar 

  41. M. Ge, Z. Hu, J.L. Wei, Q.B. He, Z.X. He, Recent advances in persulfate-assisted TiO2-based photocatalysis for wastewater treatment: performances, mechanism and perspectives. J. Alloys Compd. 888, 161625 (2021). https://doi.org/10.1016/j.jallcom.2021.161625

    Article  CAS  Google Scholar 

  42. X. Yuan, S.L. Qu, X.Y. Huang, X.G. Xue, C.L. Yuan, S.W. Wang, L. Wei, P. Cai, Design of core-shelled g-C3N4@ZIF-8 photocatalyst with enhanced tetracycline adsorption for boosting photocatalytic degradation. Chem. Eng. J. 416, 129148 (2021). https://doi.org/10.1016/j.cej.2021.129148

    Article  CAS  Google Scholar 

  43. J.C. Lyu, M. Ge, Z. Hu, C.S. Guo, One-pot synthesis of magnetic CuO/Fe2O3/CuFe2O4 nanocomposite to activate persulfate for levofloxacin removal: investigation of efficiency, mechanism and degradation route. Chem. Eng. J. 389, 124456 (2020). https://doi.org/10.1016/j.cej.2020.124456

    Article  CAS  Google Scholar 

  44. J. Lu, Y. Zhou, Y.B. Zhou, Efficiently activate peroxymonosulfate by Fe3O4@MoS2 for rapid degradation of sulfonamides. Chem. Eng. J. 422, 130126 (2021). https://doi.org/10.1016/j.cej.2021.130126

    Article  CAS  Google Scholar 

  45. H.H. Wang, H. Guo, N. Zhang, Z.S. Chen, B.W. Hu, X.K. Wang, Enhanced photoreduction of U(VI) on C3N4 by Cr(VI) and bisphenol A: ESR, XPS, and EXAFS investigation. Environ. Sci. Technol. 53, 6454 (2019). https://doi.org/10.1016/j.cej.2021.129164

    Article  CAS  Google Scholar 

  46. C.F. Zhang, Q. Zhuang, H. Wang, X.T. Ying, R.Y. Ji, D.H. Sheng, W. Dong, A.M. Xie, Constructing an acidic microenvironment by MoS2 in heterogeneous Fenton reaction for pollutant control. Angew. Chem. Int. Ed. 60, 17155 (2021). https://doi.org/10.1002/anie.202105736

    Article  CAS  Google Scholar 

  47. X.W. Li, X.T. Liu, C.Y. Lin, H.J. Zhang, Z. Zhou, G.X. Fan, J. Ma, Cobalt ferrite nanoparticles supported on drinking water treatment residuals: an efficient magnetic heterogeneous catalyst to activate peroxymonosulfate for the degradation of atrazine. Chem. Eng. J. 367, 208 (2019). https://doi.org/10.1016/j.cej.2019.02.151

    Article  CAS  Google Scholar 

  48. Z. Hu, M. Ge, C.S. Guo, Efficient removal of levofloxacin from different water matrices via simultaneous adsorption and photocatalysis using a magnetic Ag3PO4/rGO/CoFe2O4 catalyst. Chemosphere 268, 128834 (2021). https://doi.org/10.1016/j.chemosphere.2020.128834

    Article  CAS  Google Scholar 

  49. G.X. Huang, C.Y. Wang, C.W. Yang, P.C. Guo, H.Q. Yu, Degradation of bisphenol A by peroxymonosulfate catalytically activated with Mn1.8Fe1.2O4 nanospheres: synergism between Mn and Fe. Environ. Sci. Technol. 51, 12611 (2017). https://doi.org/10.1021/acs.est.7b03007

    Article  CAS  Google Scholar 

  50. Z.H. Hu, B.Y. Guo, H.Q. Wu, F. Zhu, S. Komarneni, J.F. Ma, Activation of Na2S2O8 by MIL-101(Fe)/MoS2 composite for the degradation of tetracycline with visible light assistance. Colloids Surf. A 654, 130202 (2022). https://doi.org/10.1016/j.colsurfa.2022.130202

    Article  CAS  Google Scholar 

  51. S. Li, Y.N. Wu, Y.J. Zheng, T. Jing, J.Z. Tian, H.S. Zheng, N.N. Wang, J. Nan, J. Ma, Free-radical and surface electron transfer dominated bisphenol A degradation in system of ozone and peroxydisulfate co-activated by CoFe2O4-biochar. Appl. Surf. Sci. 541, 147887 (2021). https://doi.org/10.1016/j.apsusc.2020.147887

    Article  CAS  Google Scholar 

  52. Q.Y. Yi, J.H. Ji, B. Shen, C.C. Dong, J. Liu, J.L. Zhang, M.Y. Xing, Singlet oxygen triggered by superoxide radicals in a molybdenum cocatalytic Fenton reaction with enhanced redox activity in the environment. Environ. Sci. Technol. 53(16), 9725–9733 (2019). https://doi.org/10.1021/acs.est.9b01676

    Article  CAS  Google Scholar 

  53. C. Liu, Y.P. Wang, Y.T. Zhang, R.Y. Li, W.D. Meng, Z.L. Song, F. Qi, B.B. Xu, W. Chu, D.H. Yuan, B. Yu, Enhancement of Fe@porous carbon to be an efficient mediator for peroxymonosulfate activation for oxidation of organic contaminants: incorporation NH2-group into structure of its MOF precursor. Chem. Eng. J. 354, 835–848 (2018). https://doi.org/10.1016/j.cej.2018.08.060

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of Hebei Province (B2019209373) and Hebei Province High-level Talents Funded Project (No. B2020003030).

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. CZ and JYFperformed the experiments on catalyst synthesis, antibiotic degradation and mechanism study. CZ, MG and QY analyzed the experimental data and wrote the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Qiang Yu or Ming Ge.

Ethics declarations

Conflict of interest

There are no conflict of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, C., Feng, J., Su, Z. et al. Activation of peroxydisulfate by magnetic MoS2/CoFe2O4 composite catalyst for efficient degradation of tetracycline in water. J Mater Sci: Mater Electron 34, 1938 (2023). https://doi.org/10.1007/s10854-023-11357-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-11357-y

Navigation