Skip to main content
Log in

Investigation of growth temperature effects on SnSe-based photodetector performance

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

SnSe thin films were synthesized by thermal evaporation on glass slides at elevated growth temperatures. The grown films were investigated in terms of structural, morphological and optical properties. Furthermore, electrical characteristics and time-dependent photoresponses of SnSe-based photodetectors were studied in depth. SnSe thin films showed orthorhombic crystal structure with a preferred orientation of (400) for the growth temperature of 150 °C. However, the preferential orientation changed from (400) to (111) with increasing of growth temperature to 200 °C. Top view SEM data displayed a porous morphology for the samples grown at 200 °C and 250 °C temperatures. More transparent SnSe films were obtained when the growth temperature was increased to 200 °C. The band gaps of SnSe sample deposited at 150 °C and 200 °C were determined to be 1.22 eV. However, band gap reduces to 1.06 eV with the increase of the substrate temperature to 250 °C. Raman data demonstrated the shift in the general peak positions to higher frequencies as the growth temperature is increased due to the variation in bond lengths between Sn and Se atoms. Photocurrent-time data showed that SnSe sample grown at a growth temperature of 200 °C possessed the highest photocurrents because of the formation of porous structure. Rise and fall times of SnSe-based photodetector decay systematically with increasing growth temperature and the maximum responsivity and detectivity were found to be 3.33 × 10−1 A/W and 2.03 × 107 Jones, respectively for the device employing the film deposited at 200 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

References

  1. X. Zhao, G. Wang, H. Lin, Y. Du, X. Luo, Z. Kong, J. Su, J. Li, W. Xiong, Y. Miao, H. Li, G. Guo, H.H. Radamson, Nanomater. 11, 1125 (2021)

    Article  CAS  Google Scholar 

  2. Y. Miao, G. Wang, Z. Kong, B. Xu, X. Zhao, X. Luo, H. Lin, Y. Dong, B. Lu, L. Dong, J. Zhou, J. Liu, H.H. Radamson, Nanomater. 11, 2556 (2021)

    Article  CAS  Google Scholar 

  3. Y. Miao, H. Lin, B. Li, T. Dong, C. He, J. Du, X. Zhao, Z. Zhou, J. Su, H. Wang, Y. Dong, B. Lu, L. Dong, H.H. Radamson, Nanomater. 13, 606 (2023)

    Article  CAS  Google Scholar 

  4. P. Vashishtha, L. Gowsami, K.S. Jain, N. Aggarwal, G. Gupta, J. Alloys Compd. 930, 167267 (2023)

    Article  CAS  Google Scholar 

  5. L. Hao, Z. Wang, H. Xu, K. Yan, S. Dong, H. Liu, Y. Du, Y. Wu, Y. Liu, M. Dong, 2D Mater. 6, 034004 (2019)

    Article  CAS  Google Scholar 

  6. J. Liu, Q. Huang, K. Zhang, Y. Xu, M. Guo, Y. Qian, Z. Huang, F. Lai, L. Lin, Nanoscale Res. Lett. 12, 259 (2017)

    Article  Google Scholar 

  7. Y. Zhong, L. Zhang, V. Linseis, B. Qin, W. Chen, L.-D. Zhao, H. Zhu, Nano Energy. 72, 104742 (2020)

    Article  CAS  Google Scholar 

  8. M.A. Dar, D. Govindarajan, K.M. Batoo, M. Hadi, G.N. Dar, Mater. Technol. 37, 1396 (2022)

    Article  CAS  Google Scholar 

  9. S. Rani, M. Kumar, H. Sheoran, R. Singh, V.N. Singh, Mater. Today Commun. 30, 103135 (2022)

    Article  CAS  Google Scholar 

  10. Z. Li, Y. Guo, F. Zhao, C. Nie, J. Shi, X. Liu, S. Zuo, J. Jiang Vacuum. 177, 109343 (2020)

    Article  CAS  Google Scholar 

  11. M. Kumar, S. Rani, P. Vashistha, A. Pandey, G. Gupta, S. Husale, V.N. Singh, J. Alloys Compd. 879, 160370 (2021)

    Article  CAS  Google Scholar 

  12. J. Yan, S. Deng, D. Zhu, H. Bai, H. Zhu, Nano Energy. 97, 107188 (2022)

    Article  CAS  Google Scholar 

  13. L. Song, J. Zhang, B.B. Iversen, J. Mater. Chem. A 7, 17981 (2019)

    Article  CAS  Google Scholar 

  14. S. Liu, N. Sun, M. Liu, S. Sucharitakul, X.P.A. Gao, J. Appl. Phys. 123, 115109 (2018)

    Article  Google Scholar 

  15. D. Shikha, V. Mehta, J. Sharma, R.P. Chauhan, J. Mater. Sci: Mater. Electron. 28, 2487 (2017)

    CAS  Google Scholar 

  16. C. Lu, Y. Zhang, L. Zhang, Q. Yin, Appl. Surf. Sci. 484, 560 (2019)

    Article  CAS  Google Scholar 

  17. K. Singh, S. Soni, P. Anwar, S.K. Dubey, Mishra, Mater. Today Commun. 32, 103880 (2022)

    Article  CAS  Google Scholar 

  18. P. Mandal, U.K. Ghorui, A. Mondal, D. Banerjee, Electron. Mater. Lett. 18, 381 (2022)

    Article  CAS  Google Scholar 

  19. H. Yao, S. Luo, G.S. Duesberg, X. Qi, D. Lu, C. Yue, J. Zhong, AIP Adv. 8, 075123 (2018)

    Article  Google Scholar 

  20. E. Bacaksiz, B.M. Basol, M. Altunbaş, S. Yılmaz, M. Tomakin, B. Abay, Phys. Stat. Sol (b). 244, 497 (2007)

    Article  CAS  Google Scholar 

  21. N.K. Abrikosov, I.I.-I.V. Semicounducting, IV-VI, and, V.-V.I. Compounds, 1st edn., (Plenum Press, New York, 1969)

  22. V.R.M. Reddy, S. Gedi, B. Pejjai, C. Park, J. Mater. Sci: Mater. Electron. 27, 5491 (2016)

    Google Scholar 

  23. A.V.D. Drift, Philips Res. Rep. 22, 267 (1967)

    Google Scholar 

  24. P.S.S. Kumar, R. Sangeetha, R. Sivakumar, L. Amalraj, Proceedings 37, 2763–2769 (2021)

    CAS  Google Scholar 

  25. Z. Chen, T. Shen, K. Li, J. Si, Func Mater. Lett. 12, 1950040 (2019)

    Article  CAS  Google Scholar 

  26. K. Patel, P. Chauhan, A.B. Patel, G.K. Solanki, K.D. Patel, V.M. Pathak, ACS Appl. Nano Mater. 3, 11143 (2020)

    Article  CAS  Google Scholar 

  27. Y. Zhang, Y. Shi, M. Wu, K. Zhang, B. Man, M. Liu, Nanomater. 8, 515 (2018)

    Article  Google Scholar 

  28. F. Li, H. Wang, R. Huang, W. Chen, H. Zhang, Adv. Func Mater. 32, 2200516 (2022)

    Article  CAS  Google Scholar 

  29. J. Zhang, H. Zhu, X. Wu, H. Cui, D. Li, J. Jiang, C. Gao, Q. Wang, Q. Cu, Nanoscale. 7, 10807 (2015)

    Article  Google Scholar 

  30. H.S. Jagani, S.U. Gupta, K. Bhoraniya, M. Navapariya, V.M. Pathak, G.K. Solanki, H. Patel, Mater. Adv. 3, 2425 (2022)

    Article  CAS  Google Scholar 

  31. Z.Q. Bai, Z.W. Liu, Sci. Rep. 7, 11384 (2017)

    Article  Google Scholar 

  32. Y. Yu, T. Xiong, Z. Guo, S. Hou, J. Yang, Y.-Y. Liu, H. Gu, Z. Wei, Fundam Res. 2, 985 (2022)

    Article  CAS  Google Scholar 

  33. D. Lu, C. Yue, S. Luo, Z. Li, W. Xue, X. Qi, J. Zhong, Appl. Surf. Sci. 541, 148615 (2021)

    Article  CAS  Google Scholar 

  34. M. Kumar, S. Rani, P. Vashishtha, G. Gupta, X. Wang, V.N. Singh, J. Mater. Chem. C 10, 16714 (2022)

    Article  CAS  Google Scholar 

  35. L. Zeng, D. Wu, J. Jie, X. Ren, X. Hu, S.P. Lau, Y. Chai, Y.H. Tsang, Adv. Mater. 2, 2004412 (2020)

    Article  Google Scholar 

Download references

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study, conception and design. Material preparation, data collection and analysis were performed by İP, AÇ, TK and EB. The manuscript was written by SY, BMB and EB and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Salih Yılmaz.

Ethics declarations

Competing interests

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yılmaz, S., Başol, B.M., Polat, İ. et al. Investigation of growth temperature effects on SnSe-based photodetector performance. J Mater Sci: Mater Electron 34, 1866 (2023). https://doi.org/10.1007/s10854-023-11343-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-11343-4

Navigation