Skip to main content
Log in

All pseudocapacitive MXene-PPy//MnO2 flexible asymmetric supercapacitor

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Improving the structure of electrode materials is an effective way to enhance the electrochemical properties of supercapacitors. Titanium carbide (TiC) is a two-dimensional transition metal carbide (MXene) that has been widely studied in the field. Laminating the MXene material with polypyrrole (PPy) not only prevents oxidation but also enhances the properties of the resulting electrode. Carbon cloth (CC) is chosen as the substrate to be loaded with the active material to provide remarkable flexibility. The CC/MXene-PPy electrode has a capacitance of 300.8 F g−1 at 1 A g−1. To obtain supercapacitors with higher energy density, MnO2 materials are attached to the CC surface by chemical deposition. Afterward, CC/MnO2 and CC/MXene-PPy separately as the positive and negative electrodes are assembled to form asymmetric supercapacitors. The device exhibits a capacitance value of 75.3 F g−1 at 10 mV s−1. The asymmetric supercapacitor demonstrates good cycling stability performance, with the capacitance remaining at 86.9% after 5000 cycles at 5 A g−1. Moreover, the asymmetric supercapacitors demonstrate remarkable flexibility performance, showcasing significant potential for the advancement of novel flexible devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Data will be made available on request.

References

  1. Y. Wei, W. Luo, X. Li, Z. Lin, C. Hou, M. Ma, J. Ding, T. Li, Y. Ma, PANI-MnO2 and Ti3C2Tx (MXene) as electrodes for high-performance flexible asymmetric supercapacitors. Electrochim. Acta. 406, 139874 (2022)

    Article  CAS  Google Scholar 

  2. W. Luo, Y. Sun, Z. Lin, X. Li, Y. Han, J. Ding, T. Li, C. Hou, Y. Ma, Flexible Ti3C2Tx MXene/V2O5 composite films for high-performance all-solid supercapacitors. J. Energy Storage. 62, 106807 (2023)

    Article  Google Scholar 

  3. Y. Wei, M. Zheng, W. Luo, B. Dai, J. Ren, M. Ma, T. Li, Y. Ma, All pseudocapacitive MXene-MnO2 flexible asymmetric supercapacitor. J. Energy Storage. 45, 103715 (2022)

    Article  Google Scholar 

  4. M. Kim, C. Lee, J. Jang, Fabrication of highly flexible, scalable, and high-performance supercapacitors using polyaniline/reduced graphene oxide film with enhanced electrical conductivity and crystallinity. Adv. Funct. Mater. 24, 2489–2499 (2014)

    Article  CAS  Google Scholar 

  5. S.Z. Wang, L.G. Gai, H.H. Jiang, Z.Z. Guo, N.N. Bai, J.H. Zhou, Reduced graphene oxide grafted by the polymer of polybromopyrroles for nanocomposites with superior performance for supercapacitors. J. Mater. Chem. A 3, 21257–21268 (2015)

    Article  CAS  Google Scholar 

  6. W. Luo, Y. Ma, T. Li, H.K. Thabet, C. Hou, M.M. Ibrahim, S.M. El-Bahy, B.B. Xu, Z. Guo, Overview of MXene/conducting polymer composites for supercapacitors. J. Energy Storage. 52, 105008 (2022)

    Article  Google Scholar 

  7. B. Dai, Y. Ma, S. Feng, H. Wang, M. Ma, J. Ding, X. Yin, T. Li, Fabrication of one-dimensional M (Co, Ni)@polyaniline nanochains with adjustable thickness for excellent microwave absorption properties. J. Colloid Interface Sci. 627, 113–125 (2022)

    Article  CAS  Google Scholar 

  8. B. Dai, Y. Ma, F. Dong, J. Yu, M. Ma, H.K. Thabet, S.M. El-Bahy, M.M. Ibrahim, M. Huang, I. Seok, G. Roymahapatra, N. Naik, B.B. Xu, J. Ding, T. Li, Overview of MXene and conducting polymer matrix composites for electromagnetic wave absorption. Adv. Compos. Hybrid. Mater. 5, 704–754 (2022)

    Article  Google Scholar 

  9. X. Li, Z. Lin, Y. Wei, W. Luo, J. Ding, T. Li, Y. Ma, MXene-MnO2-CoNi layered double hydroxides//activated carbon flexible asymmetric supercapacitor. J. Energy Storage. 55, 105668 (2022)

    Article  Google Scholar 

  10. W. Luo, Y. Sun, Y. Han, J. Ding, T. Li, C. Hou, Y. Ma, Flexible Ti3C2Tx MXene/polypyrrole composite films for high-performance all-solid asymmetric supercapacitors. Electrochim. Acta. 441, 141818 (2023)

    Article  CAS  Google Scholar 

  11. Y.W. Hongwu Chen, Y. Qi, Q. Zhao, L. Qu, C. Li, Pristine titanium carbide MXene films with environmentally stable conductivity and superior mechanical strength. Adv. Funct. Mater. 30, 1906996 (2020)

    Article  Google Scholar 

  12. B. Dai, F. Dong, H. Wang, Y. Qu, J. Ding, Y. Ma, M. Ma, T. Li, Fabrication of CuS/Fe3O4@polypyrrole flower-like composites for excellent electromagnetic wave absorption. J. Colloid Interface Sci. 634, 481–494 (2023)

    Article  CAS  Google Scholar 

  13. Y. Ma, C. Hou, H. Zhang, Q. Zhang, H. Liu, S. Wu, Z. Guo, Three-dimensional core-shell Fe3O4/Polyaniline coaxial heterogeneous nanonets: preparation and high performance supercapacitor electrodes. Electrochim. Acta 315, 114–123 (2019)

    Article  CAS  Google Scholar 

  14. Z. Zhuang, W. Wang, Y. Wei, T. Li, M. Ma, Y. Ma, Preparation of polyaniline nanorods/manganese dioxide nanoflowers core/shell nanostructure and investigation of electrochemical performances. Adv. Compos. Hybrid. Mater. 4, 938–945 (2021)

    Article  CAS  Google Scholar 

  15. Z. Fan, J. Zhu, X. Sun, Z. Cheng, Y. Liu, Y. Wang, High density of free-standing holey graphene/PPy films for superior volumetric capacitance of supercapacitors. ACS Appl. Mater. Interfaces 9, 21763–21772 (2017)

    Article  CAS  Google Scholar 

  16. W. Wang, M. Zheng, J. Ren, M. Ma, X. Yin, T. Li, Y. Ma, Fabrication of magnetic Fe3O4/MnO2/TiO2/polypyrrole heterostructure for efficient adsorption of Mn7+ from aqueous solution. J. Appl. Polym. Sci. 139, 52199 (2022)

    Article  CAS  Google Scholar 

  17. J.W. Honghao, Y. Zhang, Y.Z. Yang, Facile and scalable fabrication of MnO2 nanocrystallines and enhanced electrochemical performance of MnO2/MoS2 inner heterojunction structure for supercapacitor application. J. Power Sources. 450, 227616 (2020)

    Article  Google Scholar 

  18. X. Meng, L. Lu, C. Sun, Green synthesis of three-dimensional MnO(2)/graphene hydrogel composites as a high-performance electrode material for supercapacitors. ACS Appl. Mater. Interfaces 10, 16474–16481 (2018)

    Article  CAS  Google Scholar 

  19. W. Luo, Y. Wei, Z. Zhuang, Z. Lin, X. Li, C. Hou, T. Li, Y. Ma, Fabrication of Ti3C2Tx MXene/polyaniline composite films with adjustable thickness for high-performance flexible all-solid-state symmetric supercapacitors. Electrochim. Acta. 406, 139871 (2022)

    Article  CAS  Google Scholar 

  20. S. Feng, F. Zhai, H. Su, D. Sridhar, H. Algadi, B.B. Xu, R.A. Pashameah, E. Alzahrani, H.M. Abo-Dief, Y. Ma, T. Li, Z. Guo, Progress of metal organic frameworks-based composites in electromagnetic wave absorption. Mater. Today Phys. 30, 100950 (2023)

    Article  Google Scholar 

  21. K. Mao, J. Shi, Q. Zhang, Y. Hou, L. Wen, Z. Liu, F. Long, K. Niu, N. Liu, F. Long, Y. Gao, High-capacitance MXene anode based on Zn-ion pre-intercalation strategy for degradable micro Zn-ion hybrid supercapacitors. Nano Energy. 103, 107791 (2022)

    Article  CAS  Google Scholar 

  22. A.K. Ghasemi, M. Ghorbani, M.S. Lashkenari, N. Nasiri, Facile synthesize of PANI/GO/CuFe2O4 nanocomposite material with synergistic effect for superb performance supercapacitor. Electrochim. Acta. 439, 141685 (2023)

    Article  CAS  Google Scholar 

  23. M. Zheng, Y. Wei, J. Ren, B. Dai, W. luo, M. Ma, T. Li, Y. Ma, 2-aminopyridine functionalized magnetic core-shell Fe3O4@polypyrrole composite for removal of Mn (VII) from aqueous solution by double-layer adsorption. Sep. Purif. Technol. 277, 119455 (2021)

    Article  CAS  Google Scholar 

  24. Z.-M. Shen, X.-J. Luo, Y.-Y. Zhu, Y.-S. Liu, Facile co-deposition of NiO-CoO-PPy composite for asymmetric supercapacitors. J. Energy Storage. 51, 104475 (2022)

    Article  Google Scholar 

  25. Z. Lin, X. Li, S. Li, B. Li, J. Ding, Y. Han, T. Li, C. Hou, Y. Ma, Highly flexible, foldable carbon cloth/MXene/polyaniline/CoNi layered double hydroxide electrode for high-performance all solid-state supercapacitors. J. Energy Storage. 64, 107116 (2023)

    Article  Google Scholar 

  26. Z.Z. Yong Ma, M. Ma, Y. Yang, W. Li, J. Dong, S. Wu, Polymer 182, 121808 (2019)

    Article  Google Scholar 

  27. Y. Wei, W. Luo, Z. Zhuang, B. Dai, J. Ding, T. Li, M. Ma, X. Yin, Y. Ma, Fabrication of ternary MXene/MnO2/polyaniline nanostructure with good electrochemical performances. Adv. Compos. Hybrid. Mater. 4, 1082–1091 (2021)

    Article  CAS  Google Scholar 

  28. M. Zheng, J. Ren, C. Wang, Y. Ma, J. Ding, T. Li, A.Y. Elnaggar, I.H.E. Azab, M.H.H. Mahmoud, S.M. El-Bahy, I. Seok, N. Naik, G. Roymahapatra, V. Murugadoss, M. Huang, B.B. Xu, Z. Guo, Magnetite@poly(p-phenylenediamine) core–shell composite modified with salicylaldehyde for adsorption and separation of Mn (VII) from polluted water. J. Nanostructure Chem. 12, 1155–1168 (2022)

    Article  CAS  Google Scholar 

  29. C. Hou, W. Yang, X. Xie, X. Sun, J. Wang, N. Naik, D. Pan, X. Mai, Z. Guo, F. Dang, W. Du, Agaric-like anodes of porous carbon decorated with MoO2 nanoparticles for stable ultralong cycling lifespan and high-rate lithium/sodium storage. J. Colloid Interf Sci. 596, 396–407 (2021)

    Article  CAS  Google Scholar 

  30. L.E. Oloore, M.A. Gondal, A. Popoola, I.K. Popoola, Pseudocapacitive contributions to enhanced electrochemical energy storage in hybrid perovskite-nickel oxide nanoparticles composites electrodes. Electrochim. Acta. 361, 137082 (2020)

    Article  CAS  Google Scholar 

  31. E. Scavetta, B. Ballarin, C. Corticelli, I. Gualandi, D. Tonelli, V. Prevot, C. Forano, C. Mousty, An insight into the electrochemical behavior of Co/Al layered double hydroxide thin films prepared by electrodeposition. J. Power Sources. 201, 360–367 (2012)

    Article  CAS  Google Scholar 

  32. J.Y. Qiang Liu, X. Luo, Y. Miao, Y. Zhang, W. Xu, L. Yang, Y. Liang, W. Weng, M. Zhu, Fabrication of a fibrous MnO2@MXene/CNT electrode for high-performance flexible supercapacitor. Ceram. Int. 46, 11874–11881 (2020)

    Article  Google Scholar 

  33. Y. Li, P. Kamdem, X.-J. Jin, Hierarchical architecture of MXene/PANI hybrid electrode for advanced asymmetric supercapacitors. J. Alloy Compd. 850, 156608 (2021)

    Article  CAS  Google Scholar 

  34. A. VahidMohammadi, J. Moncada, H. Chen, E. Kayali, J. Orangi, C.A. Carrero, M. Beidaghi, Thick and freestanding MXene/PANI pseudocapacitive electrodes with ultrahigh specific capacitance. J. Mater. Chem. A 6, 22123–22133 (2018)

    Article  CAS  Google Scholar 

  35. X. Tao, L. Zhang, X. He, L. Fang, H. Wang, L. Zhang, L. Yu, G. Zhu, Nitrogen-doped porous MXene (Ti(3)C(2)) for flexible supercapacitors with enhanced storage performance. Molecules 27, 4890 (2022)

    Article  CAS  Google Scholar 

  36. M. Peng, W. Yang, L. Li, K. Zhang, L. Wang, T. Hu, K. Yuan, Y. Chen, Fast assembly of MXene hydrogels by interfacial electrostatic interaction for supercapacitors. Chem. Commun. (Camb). 57, 10731–10734 (2021)

    Article  CAS  Google Scholar 

  37. L.Y. He Chen, Z. Lin, Q. Zhu, P. Zhang, N. Qiao, B. Xu, Carbon nanotubes enhance flexible MXene films for high-rate supercapacitors. Energy Mater. 55, 1148–1156 (2020)

    Google Scholar 

  38. C.K.M. Shrabani De, S. Sahoo, G.C. Nayak, Polyindole booster for Ti3C2Tx MXene based symmetric and asymmetric supercapacitor devices. ACS Appl. Energ. Mater. 4, 3712–3723 (2021)

    Article  Google Scholar 

  39. S.B. Hyewon Hwang, S. Yuk, S. Kim, S.H. Song, D. Lee, High-rate electrospun Ti3C2Tx MXene/carbon nanofiber electrodes for flexible supercapacitors. Appl. Surf. Sci. 556, 149710 (2021)

    Article  Google Scholar 

  40. S.L. Xin, H. Wang, Y. Tong, P. Huang, B. Tong, J. Zhao, Dai, Changhao Liang, two-dimensional V4C3 MXene as high performance electrode materials for supercapacitors. Electrochim. Acta. 307, 414–421 (2019)

    Article  Google Scholar 

Download references

Acknowledgements

This work is financially supported by the Research and practice of multi-axis motion system of GE-PAC Control triaxis intelligent device (Project number: NGY2020116), the National Natural Science Foundation of China (22269001), the Key Research Project of Ningxia Hui Autonomous Region (2021BDE92037), the Key Research and Development Program of Yinchuan (2022XQZD010), and Yinchuan R&D innovation team of advanced energy storage materials and devices (2022CXTD05).

Funding

This work was supported by Research and practice of multi-axis motion system of GE-PAC Control triaxis intelligent device (Grant No. NGY2020116c), the National Natural Science Foundation of China (Grant No.  22269001), the Key Research Project of Ningxia Hui Autonomous Region (Grant No. 2021BDE92037), the Key Research and Development Program of Yinchuan (Grant No.  2022XQZD010), and  Yinchuan R&D innovation team of advanced energy storage materials and devices  (Grant No.  2022CXTD05).

Author information

Authors and Affiliations

Authors

Contributions

XL contributed to conceptualization, methodology, software, data curation, and writing and preparation of the original draft. HX, YF, and YQ contributed to visualization. LZ and HS contributed to Investigation. XL contributed to supervision, software, and validation. CH contributed to writing, reviewing, and editing of the manuscript.

Corresponding authors

Correspondence to Xiongfei Liu or Chunping Hou.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Xie, H., Feng, Y. et al. All pseudocapacitive MXene-PPy//MnO2 flexible asymmetric supercapacitor. J Mater Sci: Mater Electron 34, 1878 (2023). https://doi.org/10.1007/s10854-023-11341-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-11341-6

Navigation