Abstract
We report the growth of CdTe thin films using a wet-chemical electrochemical technique in an aqueous bath. The effect of bath temperature is investigated in detail on the various properties of the sample and the optoelectronic performance of the solar cell devices. A three-electrode technique was employed to deposit the samples at − 0.7 V concerning the Ag/AgCl reference electrode optimized by cyclic voltammetry measurements. The sample annealed at 450 °C for 20 min exhibited a polycrystalline cubic crystal structure of CdTe with an optical energy bandgap of ~ 1.45 eV. The Raman analysis reveals the growth of highly polycrystalline CdTe. All samples were highly compact and well-adherent to the substrate without pinholes. The annealed sample grown at a bath temperature of 50 °C exhibited a large globular grain size of ~ 1 μm. Furthermore, the stoichiometric (50:50) growth of Cd and Te was confirmed using EDAX for the sample grown at a bath temperature of 50 °C. A typical solar cell device, glass/FTO/CdS/CdTe/Au, was measured under dark and illuminated conditions with an input intensity of 100 mW/cm2 and showed a fill factor of ~ 50% and an efficiency of 2.65%. The solar cell parameters can be further improved by optimizing the surface treatment conditions using appropriate oxidizing and reducing reagents.
Similar content being viewed by others
Data availability
The data produced during the experiments are available within the manuscript.
References
J.M. Kephart, J.W. McCamy, A. Ganjoo, F.M. Alamgir, W.S. Sampath, Solar Energy Mater. Solar Cells 157, 266–275 (2016). https://doi.org/10.1016/j.solmat.2016.05.050
P.U. Londhe, A.B. Rohom, R. Fernandes, D.C. Kothari, N.B. Chaure, ACS Sustain. Chem. Eng. 6(4), 4987–4995 (2018). https://doi.org/10.1021/acssuschemeng.7b04615
S.H. Hadke, S. Levcenko, S. Lie, C.J. Hages, J.A. Márquez, T. Unold, L.H. Wong, Adv. Energy Mater. 8(32), 1802540 (2018). https://doi.org/10.1002/aenm.201802540
J. Young Kim, J.W. Lee, H. Suk Jung, H. Shin, N.G. Park, Chem. Rev. 120, 15, 7867–7918 (2020). https://doi.org/10.1021/acs.chemrev.0c00107
A. Bosio, S. Pasini, N. Romeo, Coatings 10(4), 344 (2020). https://doi.org/10.3390/coatings10040344
N.B. Chaure, S.N. Chaure, R.K. Pandey, Solar Energy Mater. Solar Cells 81(1), 39–60 (2004). https://doi.org/10.1016/j.solmat.2003.08.011
B.E. McCandless, W.A. Buchanan, C.P. Thompson, G. Sriramagiri, R.J. Lovelett, J. Duenow, D. Albin, S. Jensen, E. Colegrove, J. Moseley, H. Moutinho, S. Harvey, M. Al-Jassim, W.K. Metzger, Sci. Rep. 8, 14519 (2018). https://doi.org/10.1038/s41598-018-32746-y
M.A. Green, Y. Hishikawa, E.D. Dunlop, D. Levi, J.H. Ebinger, A.W. Ho-Baillie, Solar cell efficiency tables (version 51). Prog. Photovolt. 29, 3–15 (2021). https://doi.org/10.1002/pip.2978
A. Slade, V. Garboushian, Technical Digest, 15th International Photovoltaic Science and Engineering Conference, Shanghai, 701 (2005)
K.S. Rahmana, M.N. Harif, H.N. Rosly, M.I. Bin, S. Abdullah, S. Tiong, N. Amin, Results Phys. (2019). https://doi.org/10.1016/j.rinp.2019.102371
A. Tywari, H. Zagg, S. Blunier, K. Kessler, C. Maissen, J. Masek, Int, J. Solar Energy 12, 187–195 (1992). https://doi.org/10.1126/science.55.1432.618
K.V. Bangera, G.K. Rao, G.K. Shivakumar, AIP Conf. Proc. 1341, 328–331 (2010). https://doi.org/10.1063/1.3587012
R.Z. Khan, M. zulfequar, S.M. Khan, Bull. Mater. 35(2), 169–174 (2012). https://doi.org/10.1007/s12034-012-0274-x
M. Shao, A. Fischer, D. Grecu, U. Jayamaha, E. Bykov, G. Contreras-Puente, G.R.G. Bohn, A.D. Compaan, Appl. Phys. Lett. 69, 3045–3047 (1996). https://doi.org/10.1063/1.116834
J.L. Boone, T.P. Doren, A.K. Berry, Thin Solid Films. 87, 259–264 (1982). https://doi.org/10.1016/0040-6090(82)90362-5
A.B. Rohom, P.U. Londhe, G.R. Bhand, M.G. Lakhe, N.B. Chaure, J. Mater. Sci. 25, 1–12 (2016). https://doi.org/10.1007/s10854-016-5104-2
S. Surabhi, K. Anurag, S. Rajpal, S.R. Kumar, Mater. Today Proc. 44(1), 1463–1467 (2021)
F.A. Kroger, J. Electrochem. Soc. 125(12), 2028 (1978). https://doi.org/10.1149/1.2131357
M. Panicker, M. Knaster, J. Electrochem. Soc. 154, 566–572 (1978). https://doi.org/10.1149/1.2131499
A. Ojo, I.M. Dharmadasa, Coatings. 8(8), 262 (2018). https://doi.org/10.1007/s10854-016-5802-9
D.P. Sali, N.B. Chaure, Mater. Today: Proc. 42(2), 127 (2021). https://doi.org/10.1016/j.matpr.2020.07.475
R.B. Gore, R.K. Pandy, S.K. Kulkarni, J. Appl. Phys. (1989). https://doi.org/10.1063/1.342754
R.N. Bhattacharya, K. Rajeshwar, R.N. Noufi, J. Electrochem. Soc. 131(4), 939–942 (1984)
A.S. Ukarande, S.M. Sonawane, S.N. Chaure, N.B. Chaure, J. Mater. Sci. 33, 22456–22468 (2022). https://doi.org/10.1007/s10854-022-09022-x
M.N. Md Daud, A. Zakaria, A. Jafari, M.S. Mohd Ghazali, W.R. Wan, Abdullah, Z. Zainal, Int. J. Mol. Sci. 13, 5706–5714 (2012). https://doi.org/10.3390/ijms13055706
D.P. Sali, N.B. Chaure, A. Applied Physics, Appl. Phys. (2021). https://doi.org/10.1007/s00339-020-04218-6
S. Chander, A. Purohit, C. Lal, M.S. Dhaka, Mater. Chem. Phys. 185, 202 (2017). https://doi.org/10.1016/j.matchemphys.2016.10.024
G.K. Williamson, W.H. Hall, X-ray line broadening from filed aluminium and wolfram. Acta Metall. (1953). https://doi.org/10.1016/0001-6160(53)90006-6
J.D. Major, Semicond. Sci. Technol. 31, 093001 (2016). https://doi.org/10.1088/0268-1242/31/9/093001
E.R. Shaban, N. Afify, A. El-Taher, J. Alloys Compd. 482, 400–404 (2009). https://doi.org/10.1016/j.jallcom.2009.04.033
C.F. Reyes, J.R. Contreras, C. Molina-Contreras, C. Medina-Gutiérrez, S. Calixto, Spectrochim. Acta Part A 65, 51–55 (2006). https://doi.org/10.1016/j.saa.2005.07.082
J.R. Cardenas, H. Sobral, Materials. 10, 607–619 (2017). https://doi.org/10.3390/ma10060607
O.R. Ochoa, E.J. Witkowski, C. Colajacomo, J.H. Simmons, B.G. Potter, J. Mater. Sci. Lett. 16, 613–616 (1997). https://doi.org/10.1023/A:1018598729012
N. Abbas Shah, A. Ali, Z. Ali, A. Maqsood, A.K.S. Aqili1., J. Cryst. Growth. 284, 477–485 (2005). https://doi.org/10.1016/j.jcrysgro.2005.08.005
K. Punitha, R. Sivakumar, C. Sanjeeviraja, V. Ganesan, Appl. Surf. Sci. 344, 89–100 (2015). https://doi.org/10.1016/j.apsusc.2015.03.095
S. Lin, S. Xie, Y. Lei, T. Gan, L. Wu, J. Zhang, Y. Yang, Opt. Mater. 127, 112265 (2022). https://doi.org/10.1016/j.optmat.2022.112265
G.E.A. Muftah, M. Hassan, I.M. Dharmadasa, Int. J. Eng. Innov. Res. 7(6), 2277–5668 (2017). https://doi.org/10.1007/s10854-016-5206-x
A. Baskaran, P. Smereka, J. Appl. Phys. 111, 044321 (2012). https://doi.org/10.1063/1.3679068
K.A. Lozovoy, A.G. Korotaev, A.P. Kokhanenko, V.V. Dirko, A.V. Voitsekhovskii, Surf. Coat. Technol. 384, 125289 (2020). https://doi.org/10.1016/j.tsf.2006.12.169
I.M. Dharmadasa, P.A. Bingham, O.K. Echendu, H.I. Salim, T. Druffel, R. Dharmadasa, G.U. Sumanasekera, R.R. Dharmasena, M.B. Dergacheva, K.A. Mit, K.A. Urazov, L. Bowen, M. Walls, A. Abbas, Coatings. 4, 380–415 (2014). https://doi.org/10.3390/coatings4030380
I. Sisman, U. Demir, J. Electroanal. Chem. 651(2), 222–227 (2011). https://doi.org/10.1016/j.jelechem.2010.12.005
N.B. Chaure, S. Bordas, A.P. Samantilleke, S.N. Chaure, J. Haigh, I.M. Dharmadasa, Thin Solid Films. 437, 10–17 (2003). https://doi.org/10.1016/S0040-6090(03)00671-0
A. Mayabadi, K. Mirabbaszadeh, A. Pawbake, S. Rondiya, A. Rokade, R. Waykar, R. Kulkarni, H. Pathan, S. Jadkar, J. Mater. Sci. (2017). https://doi.org/10.1007/s10854-017-7823-4
Acknowledgements
The authors acknowledge the financial support received from the SERB and UGC-DAE. The authors are grateful to the Swedish Research Council (Grant Ref. Dnr. 2021-04889) for financial assistance under the Swedish Research Links Network between Sweden, India, Sri Lanka, and Nigeria.
Funding
This work was supported by Science education and research board, India and Swedish Research Council (Grant no. Grant Ref. Dnr. 2021-04889).
Author information
Authors and Affiliations
Contributions
AU: Material preparation, data collection, formal analysis, and the writing of the first draft of the manuscript. MS: Contributed to the experimentation, data collection, and formal analysis. SC: Conceptualization, writing—review and editing, project administration, funding acquisition, supervision. OIO: Partial data analysis and draft review. TMWJB: Data analysis and draft reviewing and corrections. MF: Data analysis and draft reviewing and editing. B-EM: Formal analysis and draft reviewing and editing. MAKLD: Data analysis and draft reviewing, editing, and discussion. IA: Manuscript reviewing and editing, project administration, funding acquisition. NBC: Conceptualization, writing—review and editing, supervision, project administration, funding acquisition.
Corresponding author
Ethics declarations
Competing interests
The authors declare that there exists no conflict of financial or non-financial interests that are directly or indirectly related to the work submitted for publication.
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Ukarande, A., Salve, M.V., Chaure, S. et al. Investigation of electrodeposited CdTe thin films for solar cell development. J Mater Sci: Mater Electron 34, 1887 (2023). https://doi.org/10.1007/s10854-023-11337-2
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s10854-023-11337-2