Skip to main content

Advertisement

Log in

Investigation of electrodeposited CdTe thin films for solar cell development

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

We report the growth of CdTe thin films using a wet-chemical electrochemical technique in an aqueous bath. The effect of bath temperature is investigated in detail on the various properties of the sample and the optoelectronic performance of the solar cell devices. A three-electrode technique was employed to deposit the samples at − 0.7 V concerning the Ag/AgCl reference electrode optimized by cyclic voltammetry measurements. The sample annealed at 450 °C for 20 min exhibited a polycrystalline cubic crystal structure of CdTe with an optical energy bandgap of ~ 1.45 eV. The Raman analysis reveals the growth of highly polycrystalline CdTe. All samples were highly compact and well-adherent to the substrate without pinholes. The annealed sample grown at a bath temperature of 50 °C exhibited a large globular grain size of ~ 1 μm. Furthermore, the stoichiometric (50:50) growth of Cd and Te was confirmed using EDAX for the sample grown at a bath temperature of 50 °C. A typical solar cell device, glass/FTO/CdS/CdTe/Au, was measured under dark and illuminated conditions with an input intensity of 100 mW/cm2 and showed a fill factor of ~ 50% and an efficiency of 2.65%. The solar cell parameters can be further improved by optimizing the surface treatment conditions using appropriate oxidizing and reducing reagents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The data produced during the experiments are available within the manuscript.

References

  1. J.M. Kephart, J.W. McCamy, A. Ganjoo, F.M. Alamgir, W.S. Sampath, Solar Energy Mater. Solar Cells 157, 266–275 (2016). https://doi.org/10.1016/j.solmat.2016.05.050

    Article  CAS  Google Scholar 

  2. P.U. Londhe, A.B. Rohom, R. Fernandes, D.C. Kothari, N.B. Chaure, ACS Sustain. Chem. Eng. 6(4), 4987–4995 (2018). https://doi.org/10.1021/acssuschemeng.7b04615

    Article  CAS  Google Scholar 

  3. S.H. Hadke, S. Levcenko, S. Lie, C.J. Hages, J.A. Márquez, T. Unold, L.H. Wong, Adv. Energy Mater. 8(32), 1802540 (2018). https://doi.org/10.1002/aenm.201802540

    Article  CAS  Google Scholar 

  4. J. Young Kim, J.W. Lee, H. Suk Jung, H. Shin, N.G. Park, Chem. Rev. 120, 15, 7867–7918 (2020). https://doi.org/10.1021/acs.chemrev.0c00107

    Article  CAS  Google Scholar 

  5. A. Bosio, S. Pasini, N. Romeo, Coatings 10(4), 344 (2020). https://doi.org/10.3390/coatings10040344

    Article  CAS  Google Scholar 

  6. N.B. Chaure, S.N. Chaure, R.K. Pandey, Solar Energy Mater. Solar Cells 81(1), 39–60 (2004). https://doi.org/10.1016/j.solmat.2003.08.011

    Article  CAS  Google Scholar 

  7. B.E. McCandless, W.A. Buchanan, C.P. Thompson, G. Sriramagiri, R.J. Lovelett, J. Duenow, D. Albin, S. Jensen, E. Colegrove, J. Moseley, H. Moutinho, S. Harvey, M. Al-Jassim, W.K. Metzger, Sci. Rep. 8, 14519 (2018). https://doi.org/10.1038/s41598-018-32746-y

    Article  CAS  Google Scholar 

  8. M.A. Green, Y. Hishikawa, E.D. Dunlop, D. Levi, J.H. Ebinger, A.W. Ho-Baillie, Solar cell efficiency tables (version 51). Prog. Photovolt. 29, 3–15 (2021). https://doi.org/10.1002/pip.2978

    Article  Google Scholar 

  9. A. Slade, V. Garboushian, Technical Digest, 15th International Photovoltaic Science and Engineering Conference, Shanghai, 701 (2005)

  10. K.S. Rahmana, M.N. Harif, H.N. Rosly, M.I. Bin, S. Abdullah, S. Tiong, N. Amin, Results Phys. (2019). https://doi.org/10.1016/j.rinp.2019.102371

    Article  Google Scholar 

  11. A. Tywari, H. Zagg, S. Blunier, K. Kessler, C. Maissen, J. Masek, Int, J. Solar Energy 12, 187–195 (1992). https://doi.org/10.1126/science.55.1432.618

    Article  Google Scholar 

  12. K.V. Bangera, G.K. Rao, G.K. Shivakumar, AIP Conf. Proc. 1341, 328–331 (2010). https://doi.org/10.1063/1.3587012

    Article  CAS  Google Scholar 

  13. R.Z. Khan, M. zulfequar, S.M. Khan, Bull. Mater. 35(2), 169–174 (2012). https://doi.org/10.1007/s12034-012-0274-x

    Article  CAS  Google Scholar 

  14. M. Shao, A. Fischer, D. Grecu, U. Jayamaha, E. Bykov, G. Contreras-Puente, G.R.G. Bohn, A.D. Compaan, Appl. Phys. Lett. 69, 3045–3047 (1996). https://doi.org/10.1063/1.116834

    Article  CAS  Google Scholar 

  15. J.L. Boone, T.P. Doren, A.K. Berry, Thin Solid Films. 87, 259–264 (1982). https://doi.org/10.1016/0040-6090(82)90362-5

    Article  CAS  Google Scholar 

  16. A.B. Rohom, P.U. Londhe, G.R. Bhand, M.G. Lakhe, N.B. Chaure, J. Mater. Sci. 25, 1–12 (2016). https://doi.org/10.1007/s10854-016-5104-2

    Article  CAS  Google Scholar 

  17. S. Surabhi, K. Anurag, S. Rajpal, S.R. Kumar, Mater. Today Proc. 44(1), 1463–1467 (2021)

    Article  CAS  Google Scholar 

  18. F.A. Kroger, J. Electrochem. Soc. 125(12), 2028 (1978). https://doi.org/10.1149/1.2131357

    Article  CAS  Google Scholar 

  19. M. Panicker, M. Knaster, J. Electrochem. Soc. 154, 566–572 (1978). https://doi.org/10.1149/1.2131499

    Article  Google Scholar 

  20. A. Ojo, I.M. Dharmadasa, Coatings. 8(8), 262 (2018). https://doi.org/10.1007/s10854-016-5802-9

    Article  CAS  Google Scholar 

  21. D.P. Sali, N.B. Chaure, Mater. Today: Proc. 42(2), 127 (2021). https://doi.org/10.1016/j.matpr.2020.07.475

    Article  CAS  Google Scholar 

  22. R.B. Gore, R.K. Pandy, S.K. Kulkarni, J. Appl. Phys. (1989). https://doi.org/10.1063/1.342754

    Article  Google Scholar 

  23. R.N. Bhattacharya, K. Rajeshwar, R.N. Noufi, J. Electrochem. Soc. 131(4), 939–942 (1984)

    Article  CAS  Google Scholar 

  24. A.S. Ukarande, S.M. Sonawane, S.N. Chaure, N.B. Chaure, J. Mater. Sci. 33, 22456–22468 (2022). https://doi.org/10.1007/s10854-022-09022-x

    Article  CAS  Google Scholar 

  25. M.N. Md Daud, A. Zakaria, A. Jafari, M.S. Mohd Ghazali, W.R. Wan, Abdullah, Z. Zainal, Int. J. Mol. Sci. 13, 5706–5714 (2012). https://doi.org/10.3390/ijms13055706

    Article  CAS  Google Scholar 

  26. D.P. Sali, N.B. Chaure, A. Applied Physics, Appl. Phys. (2021). https://doi.org/10.1007/s00339-020-04218-6

    Article  Google Scholar 

  27. S. Chander, A. Purohit, C. Lal, M.S. Dhaka, Mater. Chem. Phys. 185, 202 (2017). https://doi.org/10.1016/j.matchemphys.2016.10.024

    Article  CAS  Google Scholar 

  28. G.K. Williamson, W.H. Hall, X-ray line broadening from filed aluminium and wolfram. Acta Metall. (1953). https://doi.org/10.1016/0001-6160(53)90006-6

    Article  Google Scholar 

  29. J.D. Major, Semicond. Sci. Technol. 31, 093001 (2016). https://doi.org/10.1088/0268-1242/31/9/093001

    Article  CAS  Google Scholar 

  30. E.R. Shaban, N. Afify, A. El-Taher, J. Alloys Compd. 482, 400–404 (2009). https://doi.org/10.1016/j.jallcom.2009.04.033

    Article  CAS  Google Scholar 

  31. C.F. Reyes, J.R. Contreras, C. Molina-Contreras, C. Medina-Gutiérrez, S. Calixto, Spectrochim. Acta Part A 65, 51–55 (2006). https://doi.org/10.1016/j.saa.2005.07.082

    Article  CAS  Google Scholar 

  32. J.R. Cardenas, H. Sobral, Materials. 10, 607–619 (2017). https://doi.org/10.3390/ma10060607

    Article  CAS  Google Scholar 

  33. O.R. Ochoa, E.J. Witkowski, C. Colajacomo, J.H. Simmons, B.G. Potter, J. Mater. Sci. Lett. 16, 613–616 (1997). https://doi.org/10.1023/A:1018598729012

    Article  CAS  Google Scholar 

  34. N. Abbas Shah, A. Ali, Z. Ali, A. Maqsood, A.K.S. Aqili1., J. Cryst. Growth. 284, 477–485 (2005). https://doi.org/10.1016/j.jcrysgro.2005.08.005

    Article  CAS  Google Scholar 

  35. K. Punitha, R. Sivakumar, C. Sanjeeviraja, V. Ganesan, Appl. Surf. Sci. 344, 89–100 (2015). https://doi.org/10.1016/j.apsusc.2015.03.095

    Article  CAS  Google Scholar 

  36. S. Lin, S. Xie, Y. Lei, T. Gan, L. Wu, J. Zhang, Y. Yang, Opt. Mater. 127, 112265 (2022). https://doi.org/10.1016/j.optmat.2022.112265

    Article  CAS  Google Scholar 

  37. G.E.A. Muftah, M. Hassan, I.M. Dharmadasa, Int. J. Eng. Innov. Res. 7(6), 2277–5668 (2017). https://doi.org/10.1007/s10854-016-5206-x

    Article  CAS  Google Scholar 

  38. A. Baskaran, P. Smereka, J. Appl. Phys. 111, 044321 (2012). https://doi.org/10.1063/1.3679068

    Article  CAS  Google Scholar 

  39. K.A. Lozovoy, A.G. Korotaev, A.P. Kokhanenko, V.V. Dirko, A.V. Voitsekhovskii, Surf. Coat. Technol. 384, 125289 (2020). https://doi.org/10.1016/j.tsf.2006.12.169

    Article  CAS  Google Scholar 

  40. I.M. Dharmadasa, P.A. Bingham, O.K. Echendu, H.I. Salim, T. Druffel, R. Dharmadasa, G.U. Sumanasekera, R.R. Dharmasena, M.B. Dergacheva, K.A. Mit, K.A. Urazov, L. Bowen, M. Walls, A. Abbas, Coatings. 4, 380–415 (2014). https://doi.org/10.3390/coatings4030380

    Article  CAS  Google Scholar 

  41. I. Sisman, U. Demir, J. Electroanal. Chem. 651(2), 222–227 (2011). https://doi.org/10.1016/j.jelechem.2010.12.005

    Article  CAS  Google Scholar 

  42. N.B. Chaure, S. Bordas, A.P. Samantilleke, S.N. Chaure, J. Haigh, I.M. Dharmadasa, Thin Solid Films. 437, 10–17 (2003). https://doi.org/10.1016/S0040-6090(03)00671-0

    Article  CAS  Google Scholar 

  43. A. Mayabadi, K. Mirabbaszadeh, A. Pawbake, S. Rondiya, A. Rokade, R. Waykar, R. Kulkarni, H. Pathan, S. Jadkar, J. Mater. Sci. (2017). https://doi.org/10.1007/s10854-017-7823-4

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support received from the SERB and UGC-DAE. The authors are grateful to the Swedish Research Council (Grant Ref. Dnr. 2021-04889) for financial assistance under the Swedish Research Links Network between Sweden, India, Sri Lanka, and Nigeria.

Funding

This work was supported by Science education and research board, India and Swedish Research Council (Grant no. Grant Ref. Dnr. 2021-04889).

Author information

Authors and Affiliations

Authors

Contributions

AU: Material preparation, data collection, formal analysis, and the writing of the first draft of the manuscript. MS: Contributed to the experimentation, data collection, and formal analysis. SC: Conceptualization, writing—review and editing, project administration, funding acquisition, supervision. OIO: Partial data analysis and draft review. TMWJB: Data analysis and draft reviewing and corrections. MF: Data analysis and draft reviewing and editing. B-EM: Formal analysis and draft reviewing and editing. MAKLD: Data analysis and draft reviewing, editing, and discussion. IA: Manuscript reviewing and editing, project administration, funding acquisition. NBC: Conceptualization, writing—review and editing, supervision, project administration, funding acquisition.

Corresponding author

Correspondence to Nandu B. Chaure.

Ethics declarations

Competing interests

The authors declare that there exists no conflict of financial or non-financial interests that are directly or indirectly related to the work submitted for publication.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ukarande, A., Salve, M.V., Chaure, S. et al. Investigation of electrodeposited CdTe thin films for solar cell development. J Mater Sci: Mater Electron 34, 1887 (2023). https://doi.org/10.1007/s10854-023-11337-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-11337-2

Navigation